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Abstract: In this research paper, a new class of life-time distribution is introduced by compounding A new generalization of 

Rayleigh distribution; properties and applications and The Exponentiated G Poisson model, the so-called Exponentiated 

Rayleigh Poisson distribution. Main aim of this research article is to enhance the flexibility of Exponentiated G. Poisson 

distribution by power transformation technique. The probability density function, the survival function and the hazard function 

of the new proposed model in graphical form are illustrated. We study the properties of this new distribution with special 

emphasis on its quantile function, mode, skewness, kurtosis and moments. We have discussed residual life function, the 

probability-weighted moments, order statistics, R'enyi and entropies. We also discussed parameter estimation considering the 

maximum likelihood estimation approach. We have calculated the value of log-likelihood, Akaike's information criteria, 

Bayesian information criteria, corrected Akaike's information criteria and Hennan-Quinn information criteria of Generalized 

Rayleigh distribution, Exponentiated Chen distribution, Exponentiated Exponential distribution, Exponentiated Inverted 

Weibull distribution, Compound Rayleigh distribution and newly proposed Exponentiated Rayleigh Poisson distribution and 

found that the newly proposed model has smaller values in comparison to other. We have studied the P-P plot, Q-Q plot 

Kolmogorov Smirnov test and TTT plot of the proposed distribution for model validation. We compared the empirical 

distribution CDF and estimated distributed function CDF of the proposed model with five other models. A real dataset is 

analyzed for illustrative purposes. The importance and flexibility of the new family is illustrated by applying different 

techniques and tools. A final conclusion concludes the paper. 

Keywords: Exponentiated G Poisson Model, New Generalization of Rayleigh Distribution,  

Maximum Likely-hood Estimation (MLE), Probability Weighted Moments (PWM), Order Statistics 

 

1. Introduction 

In the last decades, many generalized distributions have 

been proposed based on different modification methods. These 

modification methods require the addition of one or more 

parameters to the base model which could provide better 

adaptability in the modeling of real-life data. Modern 

computing technology has made many of these techniques 

accessible even if analytical solutions are very complicated [8]. 

In many applied sciences such as medicine, engineering, 

and finance, amongst others, modeling and analyzing lifetime 

data are crucial. Several lifetime distributions have been used 

to model such kinds of data. The quality of the analysis 

depends heavily on the assumed probability model or 

distributions. Because of this, considerable effort has been 

expended in the development of large classes of standard 

probability distributions along with relevant, statistical 

methodologies. However, there remain many important 

problems where real data does not follow any of the classical 

or standard probability models [20]. 

Over the years, new family of distributions have been 

proposed to generalize various distributions by compounding 

well-known distributions to provide greater flexibility in 

modeling data from practical viewpoints [12] introduced a 

general class of distribution generated from the logit of the 
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beta random variable. [6] proposed for generating families of 

continuous distributions proposed a random variable X the 

"transformer" is used to transform another random variable T, 

the "transformed ".[25] explored a new three-parameter 

distribution motivated mainly by lifetime issues. [18] 

proposed a generalization of Kumaraswamy distribution 

referred to as the exponentiated Kumaraswamy distribution. 

[24] introduced a new distribution generated by gamma 

random variables and [28] considers a new general class of 

distributions generated from the logit of the gamma random 

variable which is a special case of the gamma uniform 

distribution. [21] proposed a new family of continuous 

distributions called the exponentiated transmuted G family 

which extends the transmuted G family. [16] explored a two-

parameter family of distributions on (0,1), which has many 

similarities to the beta distributions and a number of 

advantages in terms of tractability. Two general families of 

continuous distributions generated by a distribution F and 

two positive real parameters -- and -- which controls the 

skewness and tail weight of the distribution is introduced by 

[7]. [26] introduced a new family of continuous distributions 

called Marshall-Olkin Kumaraswamy distribution and [10] 

proposed a new class of continuous distributions with two 

extra shape parameters named the generalized odd log-

logistic family of distributions. 

To create the new probability model, different methods 

exist, among them, one most common method is to combine 

a valid probability distribution with a family of the 

probability distribution. In this paper, we proposed 

“Exponentiated Rayleigh Poisson distribution (ERP)”, which 

is developed from the compounding of “Exponentiated G 

Poisson (EGP) Model” and “A new generalization of 

Rayleigh distribution: properties and applications”. The main 

aim of this research article is to enhance the flexibility of 

Exponentiated G. Poisson distribution by power 

transformation technique. The induction of an extra 

parameter in the parent model usually provides greater 

flexibility and improves the goodness of fit. 

The CDF and PDF functions, Reliability / Survival and 

Hazard Rate Functions (HRF) are explicitly presented in 

Section 2. Section 3 explores some important statistical 

properties such as quantile and median function, mode, 

skewness, Kurtosis, moments, moment-generating function, 

probability-weighted moments, residual life function, order 

statistics, and entropy. In section 4, the model parameters are 

estimated by the Maximum Likelihood Estimate (MLE) 

technique. In Section 5, real data analyses are explored to 

verify theoretical findings in different aspects. Some 

concluding remarks are given in section 6. 

2. Exponentiated Rayleigh Poisson 

Distribution 

The Exponentiated G Poisson family is obtained by 

compounding the Exponentiated G family and truncated 

Poisson distribution. The proposed family of distribution 

extends several common distributions [15], having 

Cumulative distribution function (CDF) and Probability 

Density Function (PDF) are given as: 
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Where 0α > is the shape parameter and 0, 0β λ> >  are 

scale parameters. 

The corresponding PDF is 
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Among the probability distributions, Rayleigh is one of the 

most widely used distributions. Rayleigh’s distribution, 

introduced by Rayleigh in 1880, claimed to be a special case 

of Weibull’s distribution. It plays a key role in modeling and 

analyzing life-time data such as project loading, survival and 

reliability analysis, communication theory, etc [4]. With 

regard to this importance and the desire to make this 

distribution more flexible, many researchers have developed 

extensive extensions to Rayleigh distribution having CDF 

and PDF are 

2( )( ) 1 ; 0, 0xG x e xλ λ−= − > >                  (3) 

22 ( )( ) 2 ; 0, 0xg x xe xλλ λ−= > >                (4) 

Here we compounded the CDF of Rayleigh distribution in 

Exponentiated G Poisson family, it becomes, Exponentiated 

Rayleigh Poisson distribution having CDF 
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and PDF of Exponentiated Rayleigh Poisson distribution is 
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2.1. Survival Function 

The survival function is the probability of the non-failure 

occurring before time t. Therefore, the survival function of 

the proposed model is, 
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In figure 1 (left panel) various graphs of the density when 

λ=10, and for different values of α and β are displayed. This 

indicates that the PDF. of the ERP distribution is well suited 

for non-normal and skewed. The greater the value of α, the 

more positively skewed the distribution. For α< 1 and β< 1 

the density is reversed J shaped. Figure 1 (right panel) shows 
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the survival function of the ERP distribution has decreasing failure properties. 

 

Figure 1. Probability density function (left panel) and survival function (right panel) of ERP. 

2.2. Hazard Function 

The hazard function is the instant rate of failure at a given time t. Therefore, the hazard function of the proposed model is 
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Figure 2 shows that the hazard function of the ERP 

distribution has upside down (concave and convex) 

properties. 

 

Figure 2. Hazard function of ERP distribution with different values of α β , 

and λ . 

3. Statistical Properties 

In this section, major properties of ERP distribution have 

been derived. 

3.1. Useful Expansions 

Distribution is derived from the generalized binomial 

series. For, 1,  0z n< >  we have 

0
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The power series expansion of corresponding to an 

exponential function is 
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Using the binomial theorem (9) and (10) in equation (6), 

the PDF of the proposed model is 
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3.2. Quantile Function 

The quantile functions are used in theoretical aspects of 

probability theory. It is an alternative of PDF and CDF, used 

to obtain statistical measures like median, skewness, and 

kurtosis. It can also be used to generate random variables. 

The quantile function is given by 1( ) ( )Q u F u−= ;. Therefore, 

the corresponding quantile function for the purposed model is 

given as; 
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Where u has uniform U (0, 1) distribution. We obtained the 

median by substituting u=0.5 in equation (12) 

3.3. Mode 

The maximum repetitive value of the given PDF is the 

mode. To calculate the mode the necessary and sufficient 

condition is;
2

2
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necessary condition, we get, 
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Equation (13) is a nonlinear equation, and its solution 

cannot be found analytically. It can be found numerically by 

using Newton-Raphson method. 

3.4. Skewness and Kurtosis 

For statistical analysis, skewness and kurtosis are used to 

describe the characteristics of the distribution. Bowley's 

skewness [5] takes the form 
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Q Q Q
S

Q Q

− +=
−

 

Moors’ kurtosis [5] is based on Octiles and could be 

written as 
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Where Q (.) is the quantile function defined in equation 

(13). 

To calculate the statistical measure of the proposed 

distribution, 100 random samples are generated from the 

equation (12) at the initial value 5.0,   =2.0 and  10α β λ= = . 

Then, we measured the mean, median, mode, standard 

deviation, skewness, and kurtosis from these random 

samples, which illustrates the characteristics of the intended 

model. The model value is increasing at the initial value of 

parameters, 3.5,   =6.0 and  3.5α β λ= = and then gradually 

decreasing. The standard deviation of the proposed model is 

decreasing when the value of    andα β are increasing and 

the value of λ  is decreasing. Likewise, it is observed that 

different values of skewness and kurtosis are not 

symmetrical, non-normal (non-mesokurtic) in characteristics. 

Therefore, the characteristic of the proposed model is 

unimodal skewed and non-normal (Figure 1, Table 1). 

Table 1. The mean, median, mode, skewness, Kurtosis of Proposed distribution with different values of parameters. 

Parameters 
Mean Median Mode SD Skewness Kurtosis 

α  β  λ  

1.0 1.0 6.0 4.93190 5.18646 3.47842 1.14209 -1.50479 5.13026 

1.5 2.0 5.5 5.63586 6.06342 4.53186 1.17217 -2.29426 8.16931 

2.0 3.0 5.0 5.52849 5.96922 5.93371 1.37618 -1.41377 4.98233 

2.5 4.0 4.5 4.34110 4.40433 6.83482 1.65981 -0.18166 1.98246 

3.0 5.0 4.0 2.61113 2.26396 5.67804 2.16712 0.70480 2.44391 

3.5 6.0 3.5 3.31396 0.70057 7.64840 0.95582 2.13028 7.44750 

4.0 7.0 3.0 0.37266 0.13161 0.85208 0.40571 4.04105 20.8869 

4.5 8.0 2.5 0.07164 0.01353 0.13079 0.06885 5.28873 32.4093 

5.0 9.0 2.0 0.00651 0.00062 0.00884 0.00319 5.91808 38.6905 

 

3.5. Moments 

In mathematics, the moments are quantitative 

measurements in the form of a function which describe the 

characteristic of the proposed distribution. Since 

( , , )X ERP α β λ∼  the r
th

 raw moment is defined as (used 

value of f(x) is used from equation (11)) 

( )( ) 211

00 0

( ) ( )
i xr r r
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λµ ξ

∞ ∞∞
− ++

=
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After the integration of (14), the r
th

 raw moment of the 

proposed model is; 
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Particularly, when 1r = , the mean of the proposed model 

is 
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Similarly, when 2r = , the second-order raw moment of 

the proposed model is 
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By using the relation, ( )2

2 1( )Var X µ µ′ ′= −  we can 

calculate the variance of the proposed model. The mean and 

standard deviation for the proposed model with different 

values of the parameters are presented in (Table 1). 

The lower incomplete moments, say ( )s tϕ , is given by;  

0
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s
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Using the relation (11) in equation (15), and applying 

lower incomplete gamma function in 
1

0

( , )

t

s xs t x e dxγ − −= ∫ in 

equation (15), and integrating equation (15), we get the value 

of lower incomplete moment ( )s tϕ as 

2 2

10 2 2

1
( ) 1 , (1 i)

2
2 (1 )

s is
i

s
t t

i

ϕ ξ γ λ

λ

∞

 + =
 

  = + +  
  

 + 

∑  

Similarly, the conditional moment is defined as  
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s

t
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Using the relation (11) in equation (18), and applying 

upper incomplete gamma function,
1

0
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equation (16), and integrating equation (16), we get the value 

of conditional moment as 
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Likewise, Moment Generating Function (MGF) is 

0
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Using the result of the equation (14) in equation (17), the 

MGF is 
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3.6. Residual Life Function 

The n
th

 moment of the residual life of X is given by 
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Applying the binomial expansion of 

0

( ) ( 1)

n
n d n d d

d

n
x t x t

d

−

=

 
− = −  

 
∑  into the equation (18), then, 

( ) 2(1 i) x
i

0 0

1
( ) ( )

( )

n
d n d

n

i d t

n
m t t x e dx

dR t

λξ
∞∞

− +−

= =

 
= −  

 
∑∑ ∫

 

(19) 

Applying the upper incomplete gamma function in 

equation (19), n
th

 moment of the residual life of X is 
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The nth moment of the revised residual life function of X 

is found as 

0

1
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Similarly, applying the binomial expansion of ( )nx t−  into 

the above formula, we get 
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3.7. The Probability Weighted Moments (PWM) 

The Probability Weighted Moments have been obtained 

from the following relation 

, ( ( ) ] ( ) ( )r s r s
r s E X F x x f x F x dxτ

∞
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Now, we have applied the expansion of  
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Now, using the relation (11) and (22) in equation (21), it 

becomes, 
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After integrating the equation (22), the PWM of the 

proposed model is 
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3.8. Order Statistics 

Let X(1) < X(2) < … <X(n) the ordered statistics of a random 

sample of size n from the following ERP distribution with 

parameters ( ),  and α β λ . The PDF of m
th

 order statistic 

[David (1981)], has defined as 
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Where, (.,.)B  is the beta function. By substituting (11) and 

(23) in equation (24) where S is replaced by +m-1. υ Then, 

equation (24) becomes 
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 then, the moment of order 

statistics is 
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Using the value of (25) in equation (26) and integrating 

equation (26) we get the value of the r
th

 moment of order 

statistics as 
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3.9. R`enyi and q-entropies 

The entropy of a random variable X is a measure of the 

variation of uncertainty and has been used in many fields 

such as physics, engineering, and economics among others. 

The R`enyi entropy is defined as 
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2 2
2 1 1

( ) ( )2
( ) 1

1
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x xf x x e e e

e

α
λδ δ α βδδ δ δ λ λ

β
αβλ − − − − − −  

−
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 (28) 

Apply the equation (9) and (10) in equation (28), we get

[ ] ( )2
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0
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i
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−
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Used this expression in equation (27) then R`enyi entropy 

is 

( )
* 1

2
1

0

1 1
(X) log

1 22

n
i

i

I i
δ

δ δ
ξ δδ

δ λ

+

+
=
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∑  

Similarly, q-entropy is defined as 

{ }1
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1

q

qH x f x q and
q

∞

−∞
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The q-entropy is obtained by substituting the result (28) 

into (29), where δ  is replaced by q, we get 

( )
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2
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q δ
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∑  

4. Maximum Likelihood Estimation 

The maximum likelihood estimates (MLEs) of the 

unknown parameters of the distribution based on 

( )1, , nx x x= …
ɶ

observed sample value with the set of 

parameters ( , , | )xα β λℓ
ɶ , 

the log-likelihood function of the 

parameter ( , , )α β λℓ is given by 

( ) ( )2 2

2 2 2
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n

1 i=1
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n n
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e e
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αβλ λ
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−

= =

− −

=

= − + −
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∑ ∑

∑ ∑

ℓ

   (30) 

Maximum likelihood estimators of the parameters have 

been obtained by differentiating with respect to parameters 

and equating to zero, Let, 
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i i i i i i

i i i

n
x x xαλ λ α ω αβλ ω φ

λ λ = = =
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To estimate the unknown parameters ,   and α β λ  by 

solving non-linear equations (31), (32) and (33), it is clear 

that these equations cannot be solved analytically. Therefore, 

we estimate the value of unknown parameters by applying 

the Newton-Raphson's iterative technique in the log-

likelihood function of equation (30) directly, using optim() 

function in R software [9] and [23]. 

Let us denote the parameter vector by
~

( , , )δ α β λ=  and the 

corresponding MLE of
~ ~

ˆ ˆ ˆˆ   ( , , )asδ δ α β λ= , then asymptotic 

normality result is ( ) ( ) 1

3
~ ~ ~

ˆ 0, ( )N Iδ δ δ
− 

− →  
 

, where
~

( )I δ , is 

the Fisher’s Information Matrix. It is useless that the MLE 

has an asymptotic variance ( ) 1

~
( )I δ

−
. Therefore, the common 

procedure is used for Observed Information Matrix 
~

ˆ( )O δ  (as 

an estimation of the Fisher’s Information Matrix I
~

( )δ ) where 

the element of 
~

ˆ( )O δ are expresses in the following form  
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 (34) 

Where, H is the Hessian matrix,
~
δ  = ( ,   , )α β λ  and 

~
δ̂  =

ˆ ˆˆ( ,   , )α β λ . The variance-covariance matrix is obtained by 

the Newton Raphson algorithm to maximize the likelihood 

function of the Observed Information Matrix in (34). 

( ) 1

ˆ/

ˆ ˆˆ ˆ ˆvar( ) cov( , ) cov( , )

ˆ ˆ ˆ ˆˆ( ) cov( , ) var( ) cov( , )
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H δ δ
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α λ β λ λ

−

=

 
 
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 
 
 

  (35) 

Finally, we construct an approximate 100 (1 )γ− % 

confidence interval for ,   and α β λ  is 

/2 /2 /2
ˆ ˆ ˆ ˆˆ ˆvar( )  ;  var( )   and  var( )z z zγ γ γα α β β λ λ± ± ±  (36) 

where, /2Zγ  is the upper percentile of standard normal 

variate. 

5. Data analysis 

5.1. Real DATA 

In this section, we represent the analysis of one real data 

set to verify our proposed model. We consider a collection of 

real data provided in [2], which was the result of a test on the 

endurance of deep groove ball bearings. They were originally 

discussed by [19]. The data are; 17.88, 28.92, 33.0, 41.52, 

42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 

68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 

128.04, 173.4. 

5.2. Parameter Estimation 

We have computed the value of parameters by maximizing 

the log-likelihood function of our proposed model along with 

five alternative models named Generalized Rayleigh (GR) [17], 

Exponentiated Chen (EC) [11], Exponentiated Exponential 

(EE) [22], Exponentiated Inverted Weibull (EIW) [13] and 

Compound Rayleigh (CR) [27], by direct using optim() 

function in R software [9] and [23]. The PDF of compared 

models are shown in the Appendix. The values of MLE of 

each parameter with standard error are presented in table 2. 

Table 2. The MLE value of each parameter with SE of different models. 

Models 
MLE (SE) 

α̂  β̂  λ̂  θ̂  

ERP 1.01577 (0.21181) 0.50728 (0.72696) 0.01245 (0.00128) - 

GR 1.01073 (0.21075) - 0.01238 (0.00128) - 

EC 1.69426 (0.86005) 0.34706 (0.03430) 0.01415 (0.01446) - 
EE 1.02866 (0.26864) - 0.01414 (0.00362)  

EIW - 0.69531 (0.08791) - 11.51702 (3.6530) 

CR 0.12839 (0.02866) 1.68679 (1.05129) - - 

 

5.3. Model Comparisons 

We have found out the values of log-likelihood along with 

different criteria of goodness of fit (i) Akaike’s information 

criterion (AIC), (ii) Bayesian information criterion (BIC), 

(iii) Corrected Akaike’s information criterion (CAIC), and 

(iv) Hannan-Quinn Information Criterion (HQIC): AIC=
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ˆ2 ( ) 2kθ− +ℓ ; BIC= ˆ2 ( ) log( )k nθ− +ℓ ; CAIC= 2 ( 1)

1

k k
AIC

n k

++
− −

; 

and ˆ2 ( ) 2k n( n(n))HQIC θ= − +ℓ ℓ ℓ  

Where k is the number of parameters in the model and n is 

the total sample under consideration. 

According to AIC, BIC, CIAC, and HQIC, the lowest 

model value is the best model among the models of 

comparison. The intended model has a smaller value in 

comparison to other models mentioned in the table. 

Therefore, our model is better as compared to others. 

Table 3. The value of log-likelihood, AIC, BIC, CAIC, and HQIC of different models. 

Probability Models AIC BIC CAIC HQIC ˆ( )θℓ  

ERP 221.5938 225.0003 222.857 222.4506 -107.7924 

GR 230.9916 233.2625 231.5916 231.5627 -113.4922 

EC 234.5079 237.9144 235.7711 235.3646 -114.2539 

EE 246.3234 248.5944 246.9234 246.8946 -121.1587 

EIW 263.6078 265.8788 264.2078 264.1790 -129.7975 

CR 303.4312 305.7022 304.0312 304.0024 -149.7066 

 

5.4. Model Validation 

The probability-probability (P-P) plots and quantile-

quantile (Q-Q) plots can be inspected to verify this result. P-

P and Q-Q plots show that the theoretical distribution versus 

empirical distribution. A P-P plot depicts the points:

( )( ) ( )
ˆ(x ), (x ; ) ; 1, 2,...,i iF F i nδ =
∼

 

Where ( ) ( )
ˆ ˆ ˆˆ, ,  and x iδ α β λ=
∼

 is the order statistic of the 

proposed model,

1

1
( ) ( )

n

n

i

F x I X x
n =

= ≤∑  is the empirical 

distribution function, and I(.) is the indicator function. 

Similarly, the Q-Q plot depicts the points:

1
( )

ˆ, ; ;  1, 2,...,
1

i

i
x F i n

n
δ−   =  +  ∼

 

In our proposed model it is observed that there is a good fit 

of theoretical distribution versus empirical distribution in 

both plots (Figure 3). 

 

Figure 3. P-P plot (left panel) and Q-Q plot (right panel) of the proposed model. 

Further, validation of the one-sample Kolmogorov-

Smirnov test is applied. The K-S test (D=0.14543) is not 

statistically significant, suggesting that it fits well with the 

theoretical distribution versus empirical distribution (p-

value=0.7155). We have plotted the empirical distribution 

function and fitted distribution function from Figure 4 (left 

panel), it is clear that the proposed model provides a 

satisfactory fit to the given data. 

Total Time Test (TTT) plot is an important graphical 

method to check whether or not our data set can be applied to 

a  

particular model. Due to [1], the empirical version of the 

TTT plot is given by plotting: 

i: r:

1

i:

1

( )

r

n n

i

r

n

i

y n r y
r

T
n

y

=

=

+ −
  = 
 

∑

∑
; 

where, (r 1,2,..., )n= : ( 1,2,..., )i ny i n=  and are the order 

statistics of the sample. Hence, the TTT plot of the data set is 

concave which indicates that increasing the hazard rate shape 

of the proposed distribution (Figure 4, right panel). 
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Figure 4. The graph of the empirical and fitted distribution of function (left panel), TTT plot. 

Likewise, we compared the empirical distribution CDF 

with the estimated distribution function CDF of the proposed 

model along with five other models CR, GR, EE, EC, and 

EIW. Again, we compared the estimated PDF of the intended 

model with the estimated PDF of other well-known 

distributions from the same data set. The built model is well 

adapted in both cases than other distributions. The developed 

model, therefore, represents an alternative model for real data 

modeling in different fields, with enormous advantages 

(Figure 5). 

 

Figure 5. Estimated fitted CDF with EDF (left panel) and estimated fitted PDF (right panel). 

6. Conclusion 

In our study, we have introduced a new distribution named 

Exponentiated Rayleigh Poisson distribution in G family of 

distributions. Some mathematical properties of the new 

distribution including probability weighted moments, order 

statistics and their moments, residual life function, quantile 

function, skewness, kurtosis, and survival function entropy 

are derived well. The hazard function shows the upside curve 

(concave) shape. In model comparison, AIC, BIC, CIAC, and 

HQIC have been calculated. The proposed model has smaller 

values in comparison to other models, indicates the better 

model. During the graphical comparison of empirical 

distribution CDF with the estimated distribution function 

(EDF) and PDF of the proposed model with other models, 

the proposed model is adapted well in both cases. Although 

this generalization technique can be used to generalize many 

other distributions for illustration purposes, we have chosen 

the Exponentiated Exponential Poisson G family model and 

Rayleigh distribution as base distributions. The importance 

and flexibility of the new family are illustrated by different 

examples mentioned above. We hope that this study will 
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serve as a reference and help to advance future research in 

the subject area. 

Appendix 

Generalized Rayleigh (GR);

( )2 2 1
2 ( ) ( )( ; , ) 2 1x xf x xe e

α
λ λα λ αλ

−
− −= −  

Exponentiated Chen (EC);
1

1 1
1

( ; , , ) 1

x xe e
x

f x x e e e

β β
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λ λβα β λ αβλ

−
   − −   −    
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Exponentiated Exponential (EE);

( ) 1
( ) ( )( ; , ) 2 1x xf x e e

αλ λα λ αλ
−− −= −  

Exponentiated Inverted Weibull (EIW);

( )( 1)( ; , ) 1 xf x e e
β θ

ββ θ βθ
−− + −= −  

Compound Rayleigh (CR);

( ) ( )1
2( ; , ) 2f x x x

ααα β αβ β
− +

= +  
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