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Abstract: The nonlinear σ-model has known a new interest for it allows to describe the properties of two-dimensional 

quantum antiferromagnets which, when properly doped, become superconductors up to a critical temperature notably high 

compared to other types of superconducting materials. This model has been conjectured to be equivalent at low temperatures to 

the two-dimensional Heisenberg model. In this article we rigorously examine 2d-square lattices composed of classical spins 

isotropically coupled between first-nearest neighbors (i.e., showing Heisenberg couplings). A general expression of the 

characteristic polynomial associated with the zero-field partition function is established for any lattice size. In the infinite-

lattice limit a numerical study allows to select the dominant term: it is written as a l-series of eigenvalues, each one being 

characterized by a unique index l whose origin is explained. Surprisingly the zero-field partition function shows a very simple 

exact closed-form expression valid for any temperature. The thermal study of the basic l-term allows to point out crossovers 

between l- and (l+1)-terms. Coming from high temperatures where the l=0-term is dominant and going to zero Kelvin, l-eigen-

values showing increasing l-values are more and more selected. At absolute zero l becomes infinite and all the successive 

dominant l-eigenvalues become equivalent. As the z-spin correlation is null for positive temperatures but equal to unity (in 

absolute value) at absolute zero the critical temperature is absolute zero. Using an analytical method similar to the one 

employed for the zero-field partition function we also give an exact expression valid for any temperature for the spin-spin 

correlations as well as for the correlation length. In the zero-temperature limit we obtain a diagram of magnetic phases which is 

similar to the one derived through a renormalization approach. By taking the low-temperature limit of the correlation length we 

obtain the same expressions as the corresponding ones derived through a renormalization process, for each zone of the 

magnetic phase diagram, thus bringing for the first time a strong validation to the full exact solution of the model valid for any 

temperature. 
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1. Introduction 

Since the middle of the eighties with the discovery of high-

temperature superconductors [1], the nonlinear σ -model has 

known a new interest for it allows to describe the properties 

of two-dimensional quantum antiferromagnets such as 

La
2
CuO

4 [2-10]. These antiferromagnets, when properly 

doped, become superconductors up to a critical temperature 

T
c
 notably high compared to other types of superconducting 

materials. 

For studying the magnetic properties of such magnets 

Chakravarty et al. [6] have shown that it is necessary to 

consider the associated space-time which is composed of the 

crystallographic space of dimension d to which a time-like 

axis, namely called the iτ-axis, is added. The space-like axes 

are infinite but the time-like axis has a finite length called the 

"slab thickness" which is inversely proportional to the 

temperature T and hence goes to infinity as T goes to zero. As 

a result D = d + 1 is the space-time dimension: here d = 2 and 

D = 2+1. The nonlinear σ -model in 2+1 dimensions has been 

conjectured to be equivalent at low temperatures to the two-

dimensional Heisenberg model [11, 12], which in turn can be 

derived from the Hubbard model in the large U-limit [13]. 
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In their seminal paper, Chakravarty et al. [6] have studied 

this model using the method of one-loop renormalization 

group (RG) improved perturbation theory initially developed 

by Nelson and Pelkovits [14]. These authors have related the 

σ -model to the spin-1/2 Heisenberg model by simply 

considering [6, 10]: 

(i) a nearest-neighbor s = 1/2 antiferromagnetic Heisen-

berg Hamiltonian on a square lattice characterized by a 

large ex-change energy; 

(ii) very small interplanar couplings and spin anisotropies. 

In addition, they have pointed out that the long-wave-

length, low-energy properties are well described by a 

mapping to a two-dimensional classical Heisenberg magnet 

because all the effects of quantum fluctuations can be 

resorbed by means of adapted renormalizations of the cou-

pling constants. A low-temperature diagram of magnetic 

phases has been derived. It is characterized by three different 

magnetic regimes: the Renormalized Classical Regime 

(RCR), the Quantum Critical Regime (QCR) and the 

Quantum Disordered Regime (QDR). For each of these 

regimes Chakravarty et al. [6] have given a closed-form 

expression of the correlation length ξ exclusively valid near 

the critical point Tc = 0 K. Finally these authors have shown 

that the associated critical exponent is ν = 1. 

A little bit later Hasenfratz and Niedermayer published a 

more detailed low-T expression of ξ for the RCR case, exclu-

sively [15]. Finally, also using a RG technique, Chubukov et 

al. [10] reconsidered the work of Chakravarty et al. [6] by 

detailing the static but also the dynamic low-T magnetic 

properties of antiferromagnets. They notably published exact 

expressions of ξ and the magnetic susceptibility χ (restricted 

to the case of compensated antiferromagnets), also 

exclusively valid near Tc = 0 K, for each of the three zones of 

the magnetic diagram. 

From an experimental point of view, at the end of the 

nineties, the first two-dimensional (2d) magnetic compounds 

appeared [16-19]. Some of them were composed of sheets of 

classical spins (i.e., manganese ions of spin S = 5/2) well 

separated from each others by nonmagnetic organic ligands. 

These 2d compounds were the first ones whose low-T 

magnetic properties were characterized by a quantum 

critical regime. 

Thus the necessity of fitting experimental susceptibilities 

as well as the important theoretical conclusions of the 

respective works of Chakravarty et al. [6] and Chubukov et 

al. [10] motivated us to focus on the two-dimensional O(3) 

model developed on a square lattice composed of classical 

spins [20-23]. 

The mathematical framework common to our first series of 

articles was the following one: 

(i) we first considered the local exchange Hamiltonian

,

ex

i jH  associated with each lattice site (i,j) which is the 

carrier of 

 a classical spin showing Heisenberg (isotropic) couplings 

with its first-nearest neighbors; in that case the evaluation of 

the zero-field partition function Z
N
(0) necessitates to expand 

each local operator exp(−β
,

ex

i j
H ) on the infinite basis of 

spherical harmonics Yl,m; 

(ii) each harmonics is thus characterized by a couple of 

integers (l,m), with l ≥ 0 and m∈[−l, +l] and is nothing but 

the 

eigenfunction of each operator exp(−β
,

ex

i j
H ); the 

corresponding eigenvalue ( )
l

Jλ β− is the modified Bessel 

function of the first kind 1/2

1/2
( / 2 ) I ( )

l
J Jπ β β+ −  where β = 

1/kBT is the Boltzmann factor and J the exchange energy 

between consecutive spin neighbors. 

As a result the polynomial expansion describing the zero-

field partition function Z
N
(0) directly appears as a cha-

racteristic l-polynomial, for the considered lattice. 

We observed that, for most of the examined compounds 

showing a low-T QCR case, when fitting the corresponding 

experimental susceptibilities, the characteristic l-polynomial 

associated with the theoretical susceptibility χ could be re-

stricted to the dominant term characterized by l = 0, as for 

Z
N
(0), in the physical case of an infinite lattice. In other 

words no mathematical study was necessary in spite of the 

fact that this assumption gave good results for the involved 

exchange energies J i.e., the exact corresponding tabulated 

experimental values, with a Landé factor value very close to 

the theoretical one G = 2 (in µB/ℏ unit). However we also 

discovered that, for some compounds characterized by the 

same low-T quantum critical regime, it was necessary to take 

into account the terms l = 0 but also l = 1 (with m = 0) in the 

l-expansion of χ for obtaining a good fit of experimental sus-

ceptibilities. 

Thus, from a theoretical point of view, the condition 

leading to choose the term l = 0 exclusively or the terms l = 0 

and l = 1 (m = 0) in the common l-polynomial part shared by 

Z
N
(0) and χ remained a puzzling question. For all the 

experimental fits, the lowest possible value reached by 

temperature for ensuring a pure two-dimensional magnetic 

behavior was T = T3d when the 3d-magnetic ordering appears. 

We then observed that, if restricting the l-expansion of χ to 

the term l = 0, we had to fulfil the numerical condition 

kBT3d/|J| ≥ 0.255. But, if compelled to consider the terms l = 0 

and l = 1 (m = 0), we had kBT3d/|J| ≥ 0.043. Finally the low-

temperature theoretical diagram of magnetic phases was 

restricted to a single phase, the quantum critical regime, in 

contradiction with the results derived near Tc = 0 K, from a 

renormalization technique which points out three different 

magnetic regimes [6, 10]. 

In order to solve these difficulties a full study of the 

characteristic l-polynomial associated with Z
N
(0) appeared as 

unavoidable. This is the aim of the present paper. Even if 

starting with the same mathematical considerations common 

to the first series of papers previously published and all 

restricted to the case l = 0 [20-23] this paper is intended as a 

new work because, in section 2 and for the first time, we 

establish the complete closed-form expression of the charac-

teristic l-polynomial associated with Z
N
(0), valid for any 

lattice size, any temperature and any l. 

The examination of the case of a finite lattice is out of the 

framework of the present article [24]. Then we exclusively 

consider the physical case of an infinite lattice (i.e., the ther-

modynamic limit) in section 2. We numerically show that, if 
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studying the angular part of each l-term of the characteristic 

l-polynomial, the value m = 0 is selected. In addition we 

formally prove that the higher-degree term of the 

characteristic l-polynomial giving Z
N
(0) is such as all the l's 

are equal to a common value l0. Surprisingly we then obtain a 

very simple closed-form expression for Z
N
(0), valid for any 

temperature and any l. 

Finally, in section 2, we report a further thermal numerical 

study of the l-higher-degree term. Thus and for the first time, 

this study allows to point out a new result i.e., thermal 

crossovers between two consecutive l- and (l+1)-eigenvalues. 

It means that the characteristic l-polynomial can be reduced 

to a single l-term within a given temperature range but, for 

the whole temperature range, all the l-eigenvalues must be 

kept. That allows to explain that the value l = 0 characterizes 

the dominant term for reduced temperatures such as kBT/|J| ≥ 

0.255. For 0.255 ≥ kBT/|J| ≥ 0.043 we have l = 1 and so on. 

Finally l-eigenvalues ( )
l

Jλ β , with increasing l > 0, are suc-

cessively dominant when temperature is decreasing down to 

0 K. In the vicinity of absolute zero the dominant term is 

characterized by l → +∞. 

As all the l-eigenvalues show a very close low-temperature 

behavior we then deal with a continuous spectrum of 

eigenvalues, confirming the fact that the critical temperature 

is Tc = 0 K, in agreement with Mermin-Wagner's theorem 

[25]. 

From a mathematical point of view it means that Z
N
(0) is 

given by a series of continuous functions ( )
l

Jλ β− , the modi-

fied Bessel functions of the first kind, in the whole range of 

temperature so that, even if considering a specific 

temperature range inside which the Bessel function is 

dominant, no singularity can occur. 

In section 3 we analytically show that the spin correlation 

is such as <S
z
> = 0 for T > 0 K whereas <S

z
> = ±1 for T = 0 

K, again confirming the fact that Tc = 0 K. Then, for the first 

time, in the thermodynamic limit, we obtain the exact closed-

form expression of the spin-spin correlation .0,0 , 'k k< >S S  

between any couple of lattice sites (0,0) and (k,k'), valid for 

any temperature. 

For doing so we first show that all the correlation paths 

are confined within a closed domain called the "correlation 

domain" which is a rectangle whose sides are the bonds 

linking sites (0,0), (0,k'), (k,k') and (k,0) (theorem 1). Second 

we prove that open or closed loops are forbidden so that all 

the correlation paths show the same shortest possible length 

between any couple of lattice sites. All of them have the same 

weight i.e., they are composed of the same number of 

horizontal (respectively, vertical) bonds as the horizontal 

(respectively, vertical) sides of the correlation domain 

(theorem 2). This allows to derive an exact expression of the 

correlation length ξ also valid for any temperature. 

In section 4 we examine the low-temperature behavior of 

the λl(β|J|)'s. We retrieve the low-temperature magnetic phase 

diagram with 3 regimes. It is strictly similar to the one 

derived from a renormalization technique [6,10]. By taking 

the low-temperature limit of the correlation length ξ we 

obtain the same expressions as the corresponding ones 

derived through a renormalization process, for each zone of 

the magnetic phase diagram, thus bringing for the first time a 

strong validation to the full exact solution of the model valid 

for any temperature. At Tc = 0 K we retrieve the critical 

exponent ν = 1, as previously shown [6,10]. 

Finally, near the critical point, the correlation length ξx can 

be simply expressed owing to the absolute value of the 

renormalized spin-spin correlation | .0,0 0,1

~
< >S S | between 

first-nearest neighbors i.e., sites (0,0) and (0,1). 

Section 5 summarizes our conclusions. 

The appendix gives all the detailed demonstrations 

necessary for understanding the main text, notably the low-

temperature study of key physical parameters. 

2. Exact Expression of the Zero-field 

Partition Function of an Infinite 

Lattice 

2.1. Definitions 

The general Hamiltonian describing a lattice characterized 

by a square unit cell composed of (2N + 1)
2
 sites, each one 

being the carrier of a classical spin Si,j, is given by: 

,                     (1) 

with N → +∞ in the case of an infinite lattice on which we 

exclusively focus in this article and 

ex

, 1 , 1 2 1, ,( ).i j i j i j i jH J J+ += +S S S ,                           (2) 

mag
, , ,

z
i j i j i jH G S B= − ,                                (3) 

where: 

G
i,j 

= G if i + j is even or null, 

G
i,j

 = G' if i + j is odd.                               (4) 

In equation (2) J
1
 and J

2
 refer to the exchange interaction 

between first-nearest neighbors belonging to the horizontal 

lines and vertical rows of the lattice, respectively. J
i 
> 0 (res-

pectively, J
i 
< 0, with i = 1, 2) denotes an antiferromagnetic 

(respectively, ferromagnetic) coupling. Gi,j is the Landé fac-

tor characterizing each spin Si,j and expressed in µB/ℏ unit. 

Finally we consider that the classical spins Si,j are unit 

vectors so that the exchange energy JS(S + 1) ∼ JS
2
 is written 

J. It means that we do not take into account the number of 

spin components in the normalization of Si,j's so that S
2
 = 1. 

When =0 the zero-field partition function ZN(0) is 

defined as: 

)(
mag
,

ex
, jiji

N

Ni

N

Nj

HHH += ∑ ∑
−= −=

mag
, jiH
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ex
, ,(0) exp

N N N N

N i j i j

i N j Ni N j N

Z d Hβ
=− =−=− =−

 
 = −
 
 
∑ ∑∏ ∏ ∫ S , (5) 

where β = 1/kBT is the Boltzmann factor. In other words the 

zero-field partition function ZN(0) is simply obtained by 

integrating the operator ex
exp( )H−β  over all the angular va-

riables characterizing the states of all the classical spins be-

longing to the lattice. 

2.2. Preliminaries 

Due to the presence of classical spin momenta, all the 

operators 
ex

,i jH  commute and the exponential factor appearing 

in the integrand of equation (5) can be written: 

( )ex ex
, ,exp exp

N NN N

i j i j

i N j N i N j N

H Hβ β
=− =− =− =−

 
 − = −
 
 
∑ ∑ ∏ ∏ . (6) 

As a result, the particular nature of 
ex

,i jH  given by equation 

(2) allows one to separate the contributions corresponding to 

the exchange between first-nearest neighbor classical spins. 

In fact, for each of the four contributions (one per bond 

connected to the site (i,j) carrying the spin Si,j), we have to 

expand a term such as exp (−AS1.S2) where A is βJ1 or βJ2 

(the classical spins S1 and S2 being considered as unit 

vectors). If we call Θ1,2 the angle between vectors S1 and S2, 

characterized by the couples of angular variables (θ1, ϕ1) and 

(θ2, ϕ2), it is possible to expand the operator exp(−AcosΘ1,2) 

on the infinite basis of spherical harmonics which are 

eigenfunctions of the angular part of the Laplacian operator 

on the sphere of unit radius S
2
: 

( ) ( )
1/2

1,2 1/2

0

exp cos 4
2

l

l

A I A
A

π
π +

+∞

=

− Θ = − × 
 
 

∑

( ) ( )1 2

*
, ,

l

l m l m

m l

Y Y

+

=−

×∑ S S .                           (7) 

In the previous equation the (π/2A)
1/2

Il+1/2(−A)'s are modified 

Bessel functions of the first kind; S1 and S2 symbolically 

represent the couples (θ1, ϕ1) and (θ2, ϕ2). If we set: 

( ) ( )
1/2

1/2
2

l lj I j
j

π
λ β β

β +− = −
 
 
 

, j = J1 or J2,         (8) 

each operator ( )ex

,exp i jHβ−  is finally expanded on the infinite 

basis of eigenfunctions (the spherical harmonics), whereas 

the λl's are nothing but the associated eigenvalues. Under 

these conditions, the zero-field partition function ZN(0) di-

rectly appears as a characteristic polynomial. 

In the case of an infinite lattice edge effects are negligible 

so that it is equivalent to consider a lattice wrapped on a torus 

characterized by two infinite radii of curvature. Horizontal 

lines i = −N and i = N on the one hand and vertical lines j = 

−N and j = N on the other one are confused so that there are 

(2N)
2
 sites and 2(2N)

2
 bonds, with N → +∞. As a result ZN(0) 

can be written as: 

( ) 2

' 0( 1) ( 1) ,0,

80 (4 )
N N

li N j N i jli j

N
NZ

+∞ +∞

==− − =− − =

= ×∑ ∑∏ ∏π

', ,

( , ) 1 2, ,
' ', ,, ,

( ) ( )

l li j i j

i j l li j i j
m li j i jm li j i j

J Jλ β λ β
+ +

=−=−

× − −∑ ∑ F
'

           (9) 

1, 1, , 1 , 1( , ) , ' , ' , , ,( ) ( )
i j i j i j i ji j i j l m i j l m i jd Y Y
+ + − −

= ×∫ S S SF

, , , ,

* *
, , ' , ' ,( ) ( )

i j i j i j i jl m i j l m i jY Y× S S                       (10) 

where F(i,j) is the current integral per site (i,j) (with one 

spherical harmonics per bond). 

Using the following decomposition of any product of two 

spherical harmonics appearing in the integrand of F(i,j) [26] 

1/2
1 2

1 2

,2 21 1

1 2

,

(2 1)(2 1)
( ) ( )

4 (2 1)
l m

l l L

l m

L l l M L

l l
Y Y

Lπ

+ +

= − =−

 + +
= × + 
∑ ∑S S

1 2 1 1 2 2

0

,0 0
( )

L L M

L Ml l l m l m
C C Y× S                    (11) 

where 3 3

1 1 2 2

l m

l m l m
C  is a Clebsch-Gordan (C. G.) coefficient and 

the orthogonality relation of spherical harmonics F(i,j) can be 

expressed as the following C. G. series 

1/2

( , ) 1, , 1 , ,

1
(2 1)(2 1)(2 1)(2 1)

4
i j i j i j i j i j

l l l l
π + − = + + + + × ' 'F

,

1, , 1

,

,
0

0 0

, , ,

1

2 1

i j

i j i j

i j

LL i j
L

l l

L L M L
i j i j i j

C
L + −

+
>

= =−<

× ×
+∑ ∑ '

, , , , ,

1, 1, , 1 , 1 , , , , , ,

0

0 0
i j i j i j i j i j

i j i j i j i j i j i j i j i j i j i j

L M L L M

l m l m l l l m l m
C C C

+ + − −
×

' ' ' ' '
.  (12) 

The C. G. coefficients , ,

, , , ,

i j i j

i j i j i j i j

L M

l m l m
C

' '
 and 

, ,

1, 1, , 1 , 1

i j i j

i j i j i j i j

L M

l m l m
C

+ + − −' '
 (with Mi, j ≠ 0 or Mi,j = 0) do not vanish if 

the triangular inequalities |li,j − l'i,j| ≤ Li,j ≤ li,j + l'i,j and |l'i+1,j 

− li,j−1| ≤ Li, j ≤ l'i+1,j + li,j−1 are fulfilled, respectively. As a 

result, we must have L<  = max(|l'i+1,j − li,j−1|, |li,j − l'i,j|) and 

L>  = min(l'i+1,j + li,j−1, li,j + l'i,j). 

2.3. Principles of Construction of the Characteristic Poly-

nomial Associated with the Zero-field Partition 

Function 

The zero-field partition function given by equation (9) can 

be rewritten under the general form 

( ) 2

' 0( 1) ( 1) ,0,

80 (4 )
N N

li N j N i jli j

N
NZ

+∞ +∞

==− − =− − =

= ×∑ ∑∏ ∏π
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( )
', ,

,, ,
' ', ,, ,

l li j i j

l li j i j
m li j i jm li j i j

u T

+ +

=−=−

× ∑ ∑ '
                   (13) 

with: 

, ( , ) 1 2, , , ,
( ) ( )l l i j l li j i j i j i j

Tu J J 
 
 

= − −λ β λ β
' '

F .        (14) 

The examination of equation (13) giving the polynomial 

expansion of ZN(0) allows one to say that its writing is 

nothing but that one derived from the formalism of the 

transfer-matrix technique. Each current term appears as a 

product of two subterms: 

(i) a temperature-dependent radial factor containing a pro-

duct of the various eigenvalues λl(−βj), j = J1 or J2, of the full 

lattice operator ex
exp( )H−β  (with one eigenvalue per bond); 

(ii) an angular factor containing a product of integrals F(i,j) 

composed of spherical harmonics (the eigenfunctions) 

describing all the spin states of all the lattice sites (with one 

integral per site). 

Equation (13) can also be artificially shared into two parts 

labelled Part I and Part II of respective zero-field partition 

functions (0)I
NZ  and (0)II

NZ  so that the zero-field partition 

function ZN(0) can be written as 

( )0 (0) (0)I II
N N NZ Z Z= + ,                           (15) 

with 

( )
22

' ,
,

( 1) ( 1)

48
,

0

(0) (4 )

lN N l

m li i jm li j
N j N

NI N
N l l

l

Z u T

+ +

=−=−=− − =− −

+∞

=

= ∑ ∑ ∑∏ ∏π

, 

2

( 1) ( 1)
, ,

, ,

8

0 ' 0,
'

(0) (4 )
i N j N

i j i j

i j i j

NN
II N
N

l l
l l

Z
=− − =− −

+∞ +∞

= =
≠

= ×∑ ∑∏ ∏π  

( )
, ,

, , , ,

'

,

' '

i j i j

i j

i j i j i j i j

l l

l l

m l m l

u T

+ +

=− =−

× ∑ ∑                   (16) 

where ( ),i jl lu T  is given by equation (14). As a result Part I 

contains the general term ( ) ( )
2(2 )

( , ) 1 2

N

i j l lJ Jλ β λ β − − F

i.e., all the bonds are characterized by the same integer l but 

we can have a set of different relative integers mi,j∈[−l,+l] 

and m'i,j∈[−l,+ l] with mi,j = m'i,j or mi,j ≠ m'i,j. Part II appears 

as a product of "cluster" terms such as 

( ) ( )( , ) 1 ' 2

kn

i j l lJ Jλ β λ β − − F  with nk < (2N)
2
 and the 

condition n1 + n2 +... + nk = (2N)
2
. Thus, only nk bonds are 

characterized by the same integers lk, l'k and a collection of 

different relative integers mi,j∈[−lk,+lk] and m'i,j∈[−l'k,+l'k], 

with mi,j = m'i,j or mi,j ≠ m'i,j. 

2.4. General Selection Rules for the Whole Lattice 

The non-vanishing condition of each current integral F(i,j) 

due to that of C. G. coefficients allows one to derive two 

types of universal selection rules which are temperature-

independent. 

The first selection rule concerns the coefficients m and m' 

appearing in equation (12). We have (2N)
2
 equations (one per 

lattice site) such as: 

mi,j−1 + m'i+1,j – mi,j – m'i,j = 0. (SRm)               (17) 

At this step we must note that, if each spherical harmonics 

, ,( ) ( , )l m l mY Y θ φ=S
 
appearing in the integrand of F(i,j) is 

replaced by its own definition i.e., exp( ) (cos )
m m

l lC im Pφ θ  

where m

lC  is a constant depending on coefficients l and m 

[26] and (cos )
m

lP θ  is the associated Legendre polynomial, 

the non-vanishing condition of the ϕ-part directly leads to 

equation (17). As a result, we can make two remarks: the 

SRm relation is unique; due to the fact that the ϕ-part of the 

F(i,j)-integrand is null, F(i,j) is a pure real number. 

The second selection rule is derived from the fact that the 

various coefficients l and l' appearing in equation (12) obey 

triangular inequalities as noted after this equation [24]. If Mi,j 

≠ 0 the determination of li,j's and l'i,j's is exclusively 

numerical. If Mi,j = 0 we have a more restrictive vanishing 

condition [26]: 

03
0 01 2

0l

l lC = , if l1 + l2 + l3 = 2g + 1, 

03 3
0 0 31 2

( 1) 2 1l

l l

g lC l K−= − + , if l1 + l 2 + l 3 = 2g, (18) 

where K is a coefficient depending on l1, l2, l3 and g [26]. In 

equation (12) ,

, ,

0

0 0
i j

i j i j

L

l lC
'

 does not vanish if li,j + l'i,j + Li,j = 

2Ai,j ≥ 0 whereas, for 
0,

0 01, , 1

Li j

l li j i j
C

+ −'
, we must have li,j−1 + l'i+1,j + 

Li,j = 2A'i,j ≥ 0. Thus, if summing or substracting the two 

previous equations over l and l', we have (2N)
2
 equations 

(one per lattice site) such as: 

li,j−1 + l'i+1,j + li,j + l'i,j = 2gi,j, (SRl1) 

li,j−1 + l'i+1,j − li,j − l'i,j = 2g'i,j, (SRl2)                   (19) 

(or equivalently li,j + l'i,j − li,j−1 − l'i+1,j = 2g''i,j, with g''i,j = − g'i,j) 

where g'i,j or g''i,j is a relative integer. We obtain two types of 

equations which are similar to equation (17) but now, in 

equation (19), instead of having a null right member like in 

equation (17), we can have a positive, null or negative but 

always even second member. 

2.5. Zero-field Partition Function in the Thermodynamic 

Limit 

The case of thermodynamic limit (N → +∞) is less 

restrictive than that of a finite lattice studied in previous 

articles [24] because we deal with a purely numerical 

problem. For simplifying the discussion when necessary we 

shall restrict the study to the case J = J1 = J2 without loss of 

generality. If not specified we shall refer to the general case 
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J1 ≠ J2. 

As previously explained in Subsec. 2.3 the characteristic 

polynomial associated with ZN(0) for N finite or infinite is 

composed of two parts: Part I of current term 

( ) ( )
2(2 )

( , ) 1 2

N

i j l lJ Jλ β λ β − − F and Part II whose current 

term is a product of "cluster" terms 

( ) ( )( , ) 1 ' 2

kn

i j l lJ Jλ β λ β − − F , with nk < (2N)
2 

and 

2(2 )k

k

n N=∑ , so that, in both cases, the numerical study 

concerns the common term ( ) ( )( , ) 1 ' 2i j l lJ J− −λ β λ βF with l 

= l' or l ≠ l'. The m's and l's (respectively the m' 's and l' 's) 

appearing in F(i,j) (cf equation (12)) can vary or not from one 

site to another site. 

 

Figure 1. Numerical study of the ratio F(l, l, m)/F(0, 0, 0) vs l for various 

values of m (F(l, l, m) is given by equation (20) and F(0, 0, 0) = 1/4π). 

 

Figure 2. Zoom of the ratio F(l, l, m)/F(0, 0, 0) vs l for reduced l-values  

 

Figure 3. Numerical study of the ratio F(l1, l2, 0)/F(0, 0, 0) for various 

values of l2 ≤ l1. 

(i) First let us consider the case of the m's. We have to 

solve 

a linear system of (2N)
2
 equations (17) (one per site) but 

with 2(2N)
2
 unknowns mi,j and m'i,j. As it remains 2(2N)

2 

− (2N)
2 

= (2N)
2 

independent solutions over the set � of 

relative integers mi,j and m'i,j (with here N → +∞) it means 

that there are (2N)
2
 different expressions (i.e., here an 

infinity) for each local angular factor appearing in each term 

of the characteristic polynomial giving ZN(0) so that the 

statistical problem remains unsolved. Thus, at first sight, this 

result means that there is no unique expression for ZN(0). 

In summary there are only (2N)
2 
independent solutions i.e., 

(2N)
2 
different sets of coefficients (mi,j,m'i,j) obeying equation 

(17). The simplest solution is given by the condition |mi,j| = 

|m'i,j| ≠ 0 or mi,j = m'i,j = 0, for the whole lattice. 

(ii) The study of l's is strictly similar to that of m's because 

we have to solve a linear system of (2N)
2
 equations (19) 

(one per site) with 2(2N)
2
 unknowns li,j and l'i,j. We have 

(2N)
2 

independent solutions over the set � of integers li,j and 

l'i,j and the particular solution li,j = l'i,j ≠ 0 or li,j = l'i,j = 0, for 

the whole lattice. 

In other words, when N → +∞, a separate numerical study 

of integrals F(i,j) must allow one to select a unique m-value so 

that F(i,j) is maximum. First we restrict the set of integers li,j, 

li−1,j, l'i,j and l'i+1,j appearing in the integrand of F(i,j) to two 

different integers li and lj. In that case, if setting 

( , ) ( , , )i j i jF l l m=F  with li = lj ≥ 0 or li ≥ lj, we have 

( , )

(2 1)(2 1)
( , , )

4

i j

i j i j

l l
F l l m

π
+ +

= = ×F

2
0 2

0 0

1

2 1

i j

i j i j

i j

l l
L L m

l l l m l m

L l l

C C
L

+

= −

 ×
  +∑               (20) 

In the infinite-lattice limit we expect that the highest 

eigenvalue    must    naturally    arise   in   Part  I  of  current   

term 

( ) ( )
2(2 )

( , ) 1 2

N

i j l lJ Jλ β λ β − − F . If using equation (14) with 

li,j = l'i,j= l, let umax = F(i,j)λL(−βJ1)λL(−βJ2) (where L = lmax) be 

this contribution. We make the assumption that it dominates 

all the other terms inside Part I as well as all the ones 

composing Part II defined by equations (15) and (16) [24]. 

This can occur in the whole temperature range or in a smaller 

temperature one if there exist thermal crossover phenomena 

among the set of eigenvalues. 

In that case the dominant eigenvalue λl(−βJi) = λl(−Ji/kBT) 

over a temperature range becomes subdominant when the 

temperature T is outside this range and a new eigenvalue 

previously subdominant becomes dominant and so on. In the 

case of 1d spin chains, we always have the same highest 

eigenvalue (within the framework described previously). 

In this respect we have first studied the integral F(i,j) = 

F(li,lj,m) given by equation (20) with li = lj = l ≥ 0. In Figure 

1 we have reported the ratio F(l,l,m)/F(0,0,0) vs l for various 

m-values such as m≤ l (with F(0,0,0) = 1/4π). We 

immediately observe that this ratio rapidly decreases for 
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increasing m-values, for any l. However, we have zoomed 

the beginning of each curve corresponding to the case m=  
l. This trend is not followed but we always have F(l,l,m) < 

F(l,l,0) (see Figure 2). Second, in Figure 3, for m = 0, we 

observe that F(li,lj,0) decreases for lj < li. As a result, when N 

→ +∞, the integral F(l,l,0) obtained if  l = li = lj appears as 

the dominant one i.e., 

[ ] [ ]
22 2 (2 )(2 ) (2 )

( , , 0) ( , , ) ( , , )
NN N

i jF l l F l l m F l l m >> >>   , li = 

l ≥  lj, as N → +∞,                                   (21) 

so that the value m = 0 is selected. In addition this result 

shows that it is not necessary to consider 4 different integers 

li,j and l'i,j in the integral F(li,lj,m). 

 

 

Figure 4. Thermal variations of log10(rl+1/rl) for various values of l where 
the ratio rl+1/rl is defined by equation (24). 

 

Figure 5. Zoom of the plot allowing to have a better insight of the crossover 
phenomena between various l-regimes. 

 

Figure 6. Plot of the crossover temperature TCO vs l. 

For sake of simplicity we now restrict to the case J = J1 = 

J2. Under these conditions equation (13) can be rewritten in 

the thermodynamic limit: 

( )
24

2

0

28(0) (4 ) ( , ,0)
N

l

N
N lZ F l l Jπ λ

 +∞



 =

 = −β  ∑

( ) ( )
0 0( 1) ( 1)

' ' ( , , 0)
N N

l li j

l li N j N i j

i jF l l J Jλ λ
+∞ +∞

= ==− − =− −


+ −β −β 


∑ ∑∏ ∏ , as N 

→ +∞.                                   (22) 

The notation 
0 0

' '

l li j

+∞ +∞

= =
∑ ∑  means that li and lj are chosen so that 

the corresponding current second-rank term cannot give back 

the first-rank one in which li = lj = l. 

As a result and from a mathematical point of view it means 

that Z
N
(0) is given by a series of continuous functions 

( )
l

Jλ β− , the modified Bessel functions of the first kind, in 

the whole range of temperature so that, even if considering a 

specific temperature range inside which the Bessel function 

is dominant, no singularity can occur. 

In a first step we must wonder if all the current terms of 

the previous l-series must be kept in the first term of equation 

(22) i.e., if the series must be truncated, for a given range of 

temperature [
,li

T < ,
,li

T > ]. As a result, for any T∈[
,li

T < ,
,li

T > ], we 

define the dominant term 

( )2

max ,L L Lu F J= −βλ , FL,L = F(L,L,0), L = lmax      (23) 

where FL,L = F(L,L,0) is given by equation (10) reduced to m 

= m' = 0 as well as the following ratio: 

( )
( )

2

1, 1 11

,

l l ll

l l l l

F Jr

r F J

+ + ++ =
 −
 − 

λ β
λ β

, J = J1 = J2.     (24) 

We have studied the thermal behavior of rl+1/rl for various 

finite l-values. This work is reported in Figure 4. We observe 

that log10(rl+1/rl) shows a decreasing linear behavior with 

respect to kBT/J. We have zoomed Figure 4 in the very 

low-temperature domain (Figure 5). If rl+1/rl < 1 log10(rl+1/rl) 

< 0 and log10(rl+1/rl) > 0 if rl+1/rl > 1. We can then point out a 

succession of crossovers, each crossover being characterized 

by a specific temperature called crossover temperature TCO. 

TCO is the solution of the equation: 

rl(TCO) = rl+1(TCO)                                 (25) 

i.e., owing to equation (24): 

( )
( )

,

1/2

1 B CO

1, 1B CO

/

/

l l l

l+ l+l

J k T F

FJ k T

+  
=  
  

λ

λ
.                   (26) 

For instance, for the reduced temperatures such as kBT/|J|≥ 

0.255, the value l = 0 is dominant i.e., λ0(−βJ) represents the 

dominant term of the characteristic polynomial. All the other 

terms λl(−βJ) with l > 0 are subdominant. When 0.255 ≥ 

kBT/|J| ≥ 0.043 l = 1 is dominant so that λ1(−βJ) is now the 
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dominant term of the characteristic polynomial whereas 

λ0(−βJ) has become the subdominant one as well as all the 

other terms λl(−βJ) with l ≠ 1 etc... In that case the crossover 

temperature corresponding to the transition between the re-

gimes respectively characterized by l = 0 and l = 1 is labelled 

CO0,1
T . We have reported kBTCO/|J| vs l in Figure 6. 

As expected we observe that TCO rapidly decreases when l 

increases. It means that, when the temperature tends to 

absolute zero, it appears a succession of closer and closer 

crossovers so that all the l-eigenvalues, characterized by an 

increasing l-value, successively play a role. But, when T ≈ 0 

K, all these eigenvalues intervene due to the fact that the 

crossover temperatures are closer and closer. The discret 

eigenvalue spectrum tends to a continuum. As a result we can 

say that T = 0 K plays the role of critical temperature Tc. This 

aspect will be more detailed later. 

How interpreting this phenomena? In the 1d-case (infinite 

spin chain) we always have λ0(−βJ) as dominant eigenvalue 

in the whole range of temperature, the current integral F0 

being always equal to unity. In the 2d-case the situation is 

more complicated. The appearance of successive 

predominant eigenvalues is due to the presence of integrals 

Fl,l ≠ 1, for any l > 0. A numerical fit shows that the ratio 

Fl,l/F0,0 increases with l according to a logarithmic law, more 

rapidly than the ratio |λ l(−βJ)/λ0(−βJ)|
2
 which decreases 

when l increases for a given temperature. The particular case 

l → +∞ will be examined in a forthcoming section. 

Now, if taking into account the previous study, equation 

(22) can be rewritten as: 

( ) [ ] { }
22

max

48
1 20 (4 ) ( ) 1 ( , ) ( , )

NN
NZ u T S N T S N T= + +π ,T∈[

,li
T < , ,li

T > ]                                        (27) 

where umax is given by equation (23) with lmax = li = lj = l and: 

( ) ( )
( )

2

,

1

, max

4

max0

,

N

l l

l l l

u T
S N T

u T

+∞

= ≠

=
 
 
 

∑ ,

( )
( )

,

2

0 max0,( 1) ( 1)

( , )

N N
l li j

li li j j

l lj i

N N

u T
S N T

u T

+∞ +∞

= =
≠

=− − =− −

= ∑ ∑∏ ∏ .      (28) 

As the ratios | , max( ) /
i il lu T u | and |

, max( ) /
i jl lu T u | , li ≠ lj 

(where , ( )
i il lu T  and , ( )

i jl lu T  are given by equation (14)) are 

positive and lower than unity S1(N,T) and S2(N,T) are 

absolutely convergent series. 

In Appendix A.1 we have studied ZN(0) in the ther-

modynamic limit (N → +∞), for temperatures T > 0 K, in the 

whole range [0+ε,+∞[, with ε << 1. We show that, for a given 

range [
,li

T < ,
,li

T > ], S1(N,T) >> S2(N,T) (cf equation (A.6)) so 

that for any T 

(i) 1+S1(N,T) >> S2(N,T) i.e., owing to equations (15) and 

(16) (0)
I

NZ  >> (0)
II

NZ   and  ZN(0) ∼ (0)
I

NZ  if  N → +∞,  as 

 conjectured after equation (20); 

(ii) S1(N,T)+S2(N,T) → 0 (cf equation (A.5)) i.e. ZN(0) ∼

(0)I
NZ ∼

2 28 4
max(4 ) N Nuπ , with L= lmax= l in equation (27). 

As the reasoning is valid for any [
,li

T < ,
,li

T > ] we finally have 

in the general case J1 ≠ J2 

( ) ( )
2

2

0

4
8

1 2,(0) (4 )
l

N
N t

N l l l lZ F J J
+∞

=

 
 = − −∑π λ β λ β , as N 

→ +∞.                                      (29) 

In the previous equation the special notation 

0

t

l

∞+

=
∑ recalls 

that the summation can be truncated due to the fact that each 

eigenvalue ( )l kJλ −β  is exclusively dominant within the 

range [ ,lT < , ,lT > ]. But, if considering the whole temperature 

range all the l-eigenvalues must be kept. 

We must also note that, if dealing with a distribution of 

constant exchange energies J1 and J2 characterizing the 

horizontal and vertical lattice bonds, respectively, the infinite 

lattice can be described by the translation of these bonds 

along the horizontal and vertical axes of the lattice in the 

crystallographic space. As a result, if using a similar 

reasoning as the one used for expressing ZN(0), we can define 

a zero-field partition function per lattice site symbolically 

written 
21/4(0) (0) N

N Nz Z= with 

( ) ( )2

0

1 2,(0) (4 )
l

t
N l l l lz F J Jπ λ λ

+∞

=

= β β∑ , as N → +∞. (30) 

3. Spin Correlations and Correlation 

Length 

3.1. Definitions 

We first define the spin-spin correlation 

, , ' , , ,

1
. ... ...

(0)
i j i k j k N N i j i j

N

d d
Z

+ + − −< >= × × × ×∫ ∫S S S S S

, ' , ' ...i k j k i k j kd + + + +× × ×∫ S S  

ex
, ,

( 1) ( 1)

exp

N N

N N i j

i N j N

d Hβ
=− − =− −

 
 −
 
 

× ∑ ∑∫ S .          (31) 

In the thermodynamic limit (N → +∞) ZN(0) ∼ (0)
I

NZ  (cf 

equation (29)). As a result the characteristic polynomial 

giving the numerator of , , '.i j i k j k+ +< >S S  is derived from 

(0)
I

NZ  in which li,j =l'i,j = l, mi,j =m'i,j = 0. 

The zero-field spin correlation uS< > , with u = (i,j) or 

(i+k,j+k') can be obtained from equation (31) by replacing 

Si+k,j+k' or Si,j by unity. As we deal with isotropic (Heisenberg) 

couplings, we have the following properties for the site u = 

(i,j) or (i+k,j+k'): 
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, , ' , , '

1

3
.v v

i j i k j k i j i k j kSS + + + +< >= < >S S , v = x, y or z,

 

     

1

3

v
u uS >< = < >S , u = (i,j) or (i+k,j+ k') .          (32) 

The correlation function Γk,k' is: 

, ,, ' , ' , '.i j i jk k i k j k i k j k+ + + +Γ = < > − < >< >S S S S  (33) 

if (i,j) is the site of reference. In this article we choose (0,0). 

In addition, due to the isotropic nature of couplings, we have 

, ' , ' / 3v
k k k kΓ = Γ , v = x, y or z. 

The general definition of the correlation length is: 

.                (34) 

Along a horizontal lattice line k = 0 (x-crystallographic 

axis of the lattice) ξ = ξx (respectively, k' = 0 and ξ = ξy for a 

vertical lattice row, y-crystallographic axis of the lattice). 

Using the general definition of the spin-spin correlation 

given by equation (31) and expanding the exponential part of 

the integrand on the infinite basis of spherical harmonics (cf 

equation (7)), we can write: 

, ,

2

, '

8
0,0 , '

( 1) ( 1)0,0 , '

, (4 )

(0).
i j i jl l

z z N NN
k k

z z
N i N j Nk k

S S

ZS S

π

=− − =− −

 
 
 
 

< > < >
= ×

< > ∑∏ ∏

( ) ( )
, ,

, ,

( , ) 1 ' 2

, '

'
i j i j

i j i j

i j l l

m m

J Jλ β λ β× − −∑ F           (35) 

where 
( , )' i jF  is the following current integral 

1, 1, , 1 , 1, , , ,( , ) ' , ' ,' ( ) ( )
i j i j i j i ji j i j i j i ji j l m l md X Y Y
+ + − −

= ×∫ S S SF

, , , ,

* *
, ,, ' , '( ) ( )

i j i j i j i ji j i jl m l mY Y× S S                 (36) 

for any site (i,j) (and a similar expression for site (i+k,j+k')). 

When , ( , ) ( , )' i j i j=F F (cf equation (10)). Thus, if 

calculating 0,0
zS< >  (or , '

z
k kS< > ) we have a single integral 

(0,0)'F  (or ( , ')' k kF ) containing 0,0
zS = X0,0 = cosθ0,0 (or , '

z
k kS

= X k,k' = cosθk,k') whereas for 0,0 , '.z z
k kS S< >  we have two 

integrals (0,0)'F  and ( , ')' k kF  in the product of integrals ap-

pearing in equation (35). 

3.2. Calculation of the Spin Correlation z
uS< > ; 

Consequences 

In this subsection we wish to calculate the numerator of 

the spin correlation z
uS< > . It is given by equations (35) and 

(36) in which we have 
1 2, 1k kX =  except at the current site u 

= (i,j) or u = (i+k,j+k') where we use the following recursion 

relation: 

, , , , ,, , , 1 1, ,cos ( ) ( )
i j i j i j i j i ji j l m i j l l m i jY C Y+ += +θ S S

, ,, ,
1 1, ( )

i j i ji j i j
l l mC Y− − S                                          (37) 

with here mi,j = 0 and m'i,j = 0 for any site (i,j), in the thermodynamic limit (N → +∞). Then 
, 1i jlC +  and 

, 1i jlC −  reduce to 

,

,

1

, ,

1

(2 1)(2 3)i j

i j

l

i j i j

l
C

l l
+

+
=

+ +
, 

,

,

1

, ,(2 1)(2 1)i j

i j

l

i j i j

l
C

l l
− =

+ −
                                             (38) 

In the particular case , 0i jl =  which occurs at the 

beginning of each l-series expansion, we have 
1

1 / 3C+ = and 

1 0C− = . For the calculation of the spin correlation this trans-

form can be equivalently applied to each of the four spherical 

harmonics appearing in ( , )' i jF given by equation (36). For 

instance, if wishing to calculate ,
z
i jS< > , we directly apply 

equation (37) to 
, ,

*
,0 , ,0 ,( ) ( )

i j i jl i j l i jY Y=S S . As a result ( , )' i jF  

can be written as: 

, 1 1, , ,( , ) 1 , 1, , ,
' l l li j i j i ji j l l li j i j i j

C f C f+ −+ −= +F          (39) 

with: 

, , 1, , 1, , ,, ' ,0 ,0( ) ( )
i j i j i j i ji j i j i jl l l lf d Y Yε + −+ ×= ∫ S S S

, ,
, ,,0 ' ,0( ) ( )

i j i j
i j i jl lY Yε+× S S , ε = ±1,          (40) 

with li+1,j = li,j−1 = li,j = l'i,j = l. We immediately retrieve the 

calculation of integrals appearing in that of the zero-field 

partition function. As a result, if using the expansion of any 

product of two spherical harmonics given by equation (11) 

and their orthogonality condition in 
, ,,i j i jl lf +ε , we can readily 

write 
, ,, ,i j i jl l l lf f+ +=ε ε  i.e., 

3/2 1/2

,

(2 1) (2( ) 1)

4
l l

l l
f ε

ε
π+

+ + += ×

min(2 ,2 ) 2
0 0

0 0 0 0

1

1

2 1

l l
L L

l l l l

L

C C
L

ε

ε

+

+
=

 ×
  +∑ , ε = ±1.     (41) 

The non-vanishing condition of the current integral ,l lf +ε
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which is due to that of the involved C. G. coefficients allows 

one to write down a universal temperature-independent 

selection rule concerning integers l (cf equation (19)). We 

now have 
0

0 0
0

L

l l
C ε+ ≠  (with ε = ±1) and 

0

0 0
0

L

l l
C ≠  if 

respectively: 

2l + ε + L = 2g, 2l + L = 2g'.                        (42) 
 

 

Figure 7. Correlation paths (thick lines) along the frontier between the 

correlation and the wing domains (cases 1 and 2); for a given path all the 

bonds are characterized by l+1 or l−1; the other bonds not involved in the 

correlation path (thin lines) are characterized by l. In case 3 we give 

examples of correlation paths inside the correlation domain. All these paths 

show the shortest possible length through the lattice bonds between sites (i,j) 

and (i+k,j+k') and are equivalent i.e., they have the same weight. 

 
Reporting the L-value derived from the first equation i.e., 

L = 2g − (2l + ε) in the second one, we have 2g − ε = 2g'. The 

unique solution is  ε = 0 which is impossible in the present 

case because ε = ±1, exclusively. As a result 
0

0 0

L

l l
C ε+  and 

0

0 0

L

l l
C  do not vanish simultaneously but their product is 

always null. We immediately derive , 0l lf + =ε  (ε = ±1) and 

( , )' i jF = 0 so that , ' 1z
k kS< >= ± for T = 0 K, , ' 0z

k kS< >=  for T 

> 0 K and consequently 

, 'k k< >S = 0, , ' 0,0 , '.k k k kΓ = < >S S , T > 0 K.      (43) 

This result rigorously proves that the critical temperature is 

absolute zero i.e., Tc = 0 K. 

3.3. Spin-spin Correlation Between Any Couple of Lattice 

Sites 

In the thermodynamic limit (N → +∞) on which we 

exclusively focus, we are going to show that the spin-spin 

correlations can be derived from Z
N
(0). Notably the 

numerator show the same l-polynomial structure as Z
N
(0) 

which appears at the denominator. We have mk,k' = m'k,k' = 0, 

for any lattice site. 

It means that, as for Z
N
(0), there also exist thermal 

crossovers between the new l-eigenvalues of the numerator. 

Their respective thermal domains of predominance are not 

necessary the same ones as those of eigenvalues appearing in 

Z
N
(0). 

The z-z spin-spin correlation 0,0 , '.z z
k kS S< >  is given by 

equations (31) and (35). We restrict the following study to k 

> 0 and k' > 0, without loss of generality. Due to the presence 

of cosθ0,0 and cosθk,k' appearing in the integrals F’(0,0) and           

F ’(k,k') which characterize the spin orientations at sites (0,0) 

and (k,k') we have to reconsider a new integration process. 

This process is similar to that one used for calculating ZN(0). 

It can be mainly carried out through two methods: 

(i) integrating simultaneously over all the sites from the 

four lattice lines i = N, i = −(N−1),  j = N  and  j = −(N−1) 

in the direction of the lattice heart; 

(ii) integrating from horizontal line i = −(N−1) to i = N 

between vertical lines j = −(N−1) and j = N (lines i or j = N 

and i or j = −N being confused on the torus, respectively) or 

vice versa. 

It is useful to combine both methods. In a first step we 

choose method (i). In the dominant l-term the integrals F(i,j) 

involving sites located far from correlated sites (0,0) and 

(k,k') are characterized by a collection of integers l'i+1,j = li,j−1 

= li,j = l'i,j = l for reasons explained in Subsec. 2.5. This part 

of the lattice constitutes the wing domain. When reaching the 

horizontal lattice lines i = 0 and k and the vertical ones j = 0 

and k' whose respective intersections two by two are sites 

(0,0), (0,k'), (k,k') and (k,0) a special care must be brought. 

The inner domain defined by these two couples of lines is the 

correlation domain (see Figure 7). 

A consequence of method (i) is that all the bonds located 

outside the correlation domain (or out-bonds) are character-

ized by the integer l, notably all the bonds linked to the 

frontier of the correlation domain. All the previous results are 

summarized in the following theorem: 

Theorem 1 (confinement theorem) 

In the thermodynamic limit, for calculating the numerator 

of the spin-spin correlation 0,0 , '.z z
k kS S< > , it is necessary to 

take into account two domains: a correlation domain which 

is a rectangle of vertices (0,0), (0,k'), (k,k') and (k,0) within 

which all the correlation paths are confined, and a remaining 

domain called wing domain. In both domains, for an infinite 

lattice, we have m = 0. All the bonds of the wing domain are 

characterized by the same integer l, including the bonds 

linked to the correlation domain. 

In a second step we use the integration method (ii) i.e., line 

by line. The decomposition law given by equation (37) only 

intervenes at the correlated sites (0,0) and (k,k') for which we 

have l0,−1 = l'0,0 = l and l'k+1,k' = lk,k' = l, respectively, due to the 

integration in the wing domain. The corresponding integrals 

characterizing these sites are F’(0,0) and F’(k,k') given by 

equations (36), (39) and (40). The other integrals describing 

the spin states of the current sites (i,j) involved in the integra-

tion process inside the correlation domain are F(i,j)-like given 

by equation (10) except for sites belonging to the correlation 

path. 

First let us consider for instance site (0,0). The integrand 

of integral F’(0,0) given by equation (36) is 
2

0,0 ,0 0,0cos ( )lY   ×θ S  
0,0 1,0,0 0,0 ' ,0 0,0( ) ( )l lY YS S as l0,0 and l'1,0 

characterize bonds of the correlation domain not yet 
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examined through the integration process. The 

decomposition law can be applied to the spherical harmonics 

,0 0,0( )lY S ,
0,0 ,0 0,0( )lY S  or 

1,0' ,0 0,0( )lY S . The integrand of 

F’(0,0) becomes 
0,0,0 0,0 1,0 0,0 ,0 0,0( ) ( ) ( )l l lY Y Y± ×S S S  

1,0' ,0 0,0( )lY S  (integrand 1), 
0,0

2

,0 0,0 1,0 0,0( ) ( )l lY Y ±  × S S

1,0' ,0 0,0( )lY S  (integrand 2) or 
0,0

2

,0 0,0 ,0 0,0( ) ( )l lY Y  × S S

1,0' 1,0 0,0( )lY ± S  (integrand 3), respectively. We immediately 

retrieve the calculation of integrals appearing in that of the 

zero-field partition function. We express the products of pairs 

of spherical harmonics as C. G. series (cf equation (11)). For 

instance, if examining integrand 1, we can use the following 

combinations 

1,0

1,0

1,0

1,0

' 1/2

,0 0,0 ' ,0 0,0

'

(2 1)(2 ' 1)
( ) ( )

4 (2 1)

l l

l l

L l l

l l
Y Y

Lπ

+

= −

+ + 
= × + 
∑S S  

1,0

2
0

,0 0,00 ' 0
( )

L

Ll l
C Y ×
  

S , 

0,0

0,0

0,0

0,0

1 1/2

,0 0,0 1,0 0,0

' ( 1)

(2 1)(2( 1) 1)
( ) ( )

4 (2 ' 1)

l l

l l

L l l

l l
Y Y

Lπ

+ ±

±
= − ±

+ ± + 
= × + 

∑S S

0,0

2
' 0

',0 0,00 1 0
( )

L

Ll l
C Y±
 ×
  

S .                   (44) 

Introducing these C. G. series in integral F’(0,0) given by 

equation (36) and using the orthogonality condition of 

spherical harmonics leads to L = L' i.e., notably L< = L'< and 

L> = L'>. Recalling that the characteristic polynomial 

associated with the numerator of 0,0 , '.z z
k kS S< >  is derived 

from Z
N
(0) ∼ (0)I

NZ  where l'i+1,j = li,j−1 = li,j = l'i,j = l for any 

site (i,j) the unique solutions are l0,0 = l ±1, l'1,0 = l (case 1) 

and l0,0 = l, l'1,0 = l ±1 (case 2). All the other combinations 

between pairs of spherical harmonics lead to the same couple 

of solutions l0,0 and l'1,0, for integrand 1 but also for 

integrands 2 and 3. From a mathematical point of view it also 

means that, for case 1 or 2, there are only two channels of 

integration leading to: if l > 0 a path beginning with a bond 

such as l0,0 = l +1 and another one with l0,0 = l −1 (case 1) or 

a path with l'1,0 = l +1 and another one with l'1,0 = l −1 (case 

2). 

In the particular case where l = 0, we only have l0,0 = 1, l'1,0 

= 0 (case 1) or l0,0 = 0, l'1,0 = 1 (case 2). 

(i) Case 1 (see Figure 7) 

We apply the decomposition law to the spherical har-

monics 0,0,0 ( )lY S  (integrand 1). We choose l'1,0 = l. Integral 

F’(0,0) given by equation (39) can be written as 

(0,0) 0,0 0,01 , 1 1 , 1' l l l l l lC f C f+ + − −= +F ,                  (45) 

where 1lC ± is defined by equation (38) and with: 

, ,0,00,0

2

0 0, 0,0 ,0 0,0 0,0 0,0( ) ( ) ( )l ll l lf d Y Y Y εε ++  =  ∫ S S S S ,ε = ±1. (46) 

As just seen the non-vanishing condition of integral 

0,0 ,l lf +ε  imposes l0,0 = l + ε, ε = ±1. Thus all the bonds linked 

to (0,0) are characterized by the integer l whereas the unique 

bond of the correlation domain (or in-bond) is characterized 

by l0,0 = l ± 1. We have 

0,0

0,0

(0,0) 1 1, 1 1 1, 1

(0,0) 1 1, 1 1 1, 1

1

1

' , ,

' , ,

l l l l l l

l l l l l l

l l

l l

C f C f

C f C f

+
+ + + − + −

−
+ − + − − −

= +

= −

= +

= +

F

F

 (47) 

with 

[ ]1/2

',

(2 1) (2( ) 1)(2( ') 1)

4
l l

l l l
f ε ε

ε ε
π+ +

+ + + + +
= ×

2
0 0

0 0 ' 0 0

0

1

2 1

L
L L

l l l l

L

C C
L ε ε

>

+ +
=

 ×
 +∑ , ε = ±1, ε' = ±1, (48) 

and L> = min(2l, 2l + ε + ε'). In the previous equation 
0

0 0
0

L

l l
C ≠  if 2l + L = 2g and 

0

' 0 0
0

L

l l
C ε ε+ + ≠  if 2l + ε + ε' 

+ L = 2g'. Thus the product of C.G.'s does not vanish if ε + ε' 

= 2(g' − g) i.e., ε + ε' = ±2 (ε = ε'= ±1), g' − g = ±1 and ε + ε' 

= 0 (ε = −ε'= ±1), g' = g. 

As a result the corresponding contribution of site (0,0) to 

the numerator of 0,0 , '.z z
k kS S< >  is ( )(0,0) 1 1' l J±

± −λ βF  where 

( )1 1l Jλ β± −  and (0,0)'±F  are respectively given by equations 

(8) and (45)-(48). In other words, in case 1, the beginning of 

the correlation path is constituted by the bond between sites 

(0,0) and (0,1) characterized by l0,0 = l ±1 (l > 0). 

Now we consider the other sites of line i = 0 i.e., sites (0,1) 

to (0,k'). At site (0,1) there is no decomposition law. We have 

0,0 1l l= ±  due to integration at site (0,0) and 0,1'l l=  due to 

integration in the wing domain.
 
As a result, if examining 

integral F(0,1) given by equation (10), the integrand is nothing 

but 
, , ,1,1 0,1' 0 0 1 0,0 0,1 0,1 0,1 0,1( ) ( ) ( ) ( )l l llY Y Y Y ±S S S S . 

As seen after equation (44) all the decompositions of 

products of spherical harmonics pairs as C.G. series only lead 

to two possible choices. If l'1,1 = l the non-vanishing condition 

of F(0,1) (cf equation (48)) imposes l0,1 = l0,0 = l ±1 and the 

correlation path continues along the horizontal line i = 0 

(case 1). If l0,1 = l the non-vanishing condition of F(0,1) now 

imposes l'1,1 = l ±1 and the correlation path continues along 

the vertical line j = 1: we then deal with a new correlation 

path called case 3 and detailed below (see Figure 7). 

In summary, in case 1, we have two types of correlation 

path between sites (0,0) and (0,1): the bond is characterized 

by l+1 (F(0,1) = fl +1,l +1) or l−1 (F(0,1) = fl −1,l −1). This situation is 

similar for all the sites of line i = 0 i.e., between sites (0,1) 

and (0,k'−1). As a result the corresponding contribution to the 

numerator of 0,0 , '.z z
k kS S< >  is ( )(0,0) 1, 1' / l lf±

± ± ×F

( )( )1

'

1, 1 1

k

l l lf J± ± ±× −λ β . In addition, due to the integration 
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process which has swept all the in-bonds of the correlation 

domain not involved in the correlation path we have lK,K' = 

l'K,K' = l for all the horizontal and vertical bonds except for 

those of vertical line j = k'. 

Arriving at site (0,k') we have to determine l'1,k' because l0,k' 

= l'0,k' = l due to the wing contribution and l0,k'−1 = l ±1 due to 

the non-vanishing condition of integral F(0,k'−1) =fl ±1,l ±1. That 

of integral F (0,k') gives l'1,k' = l ±1 and F(0,k') = F(0,k'−1) = fl ±1,l ±1. 

Then the work of integration is similar for the remaining sites 

of the vertical line j = k' between sites (1,k') and (k−1,k'), with 

for this later site l'k,k' = l ±1. The corresponding contribution 

to the numerator of 0,0 , '.z z
k kS S< >  is ( )( )21, 1 1

k

l l lf Jλ β± ± ± − . 

If finally considering site (k,k') the integers l'k+1,k' and lk,k' 

have been already determined in the wing domain (l'k+1,k' = lk,k' 

= l) or along the correlation path (l'k,k' = l ±1). Concerning in-

tegral ( , ')' k k
±

F  an independent study similar to that achieved 

at site (0,0) can be done. We have ( , ') (0,0)' 'k k
± ±=F F  where the 

integral (0,0)'±F  is given by equations (45)-(48). Here the uni-

que solutions are l'k,k' = l ±1, lk,k'−1 = l (case 1) and l'k,k' = l, lk,k'−1 

= l ±1 (case 2). The final contribution of all the sites to the 

correlation path between sites (0,0) and (k,k') is 

( ) ( )( ) ( )( )1

2 '

(0,0) 1, 1 1 1, 1 1 2 1, 1' /
k k

l l l l l l l lf J f J fλ β λ β±
± ± ± ± ± ± ± ±− −F  (ca-

se 1). 

In summary all the horizontal bonds of the correlation path 

are characterized by l0,K'= l ±1 (0≤K'≤k'−1) between sites 

(0,0) and (0,k'−1) on the one hand and all the vertical bonds 

by l'K,k' = l±1 (1≤K≤k) between sites (0,k') and (k,k') on the 

other one. All the bonds of the correlation domain not 

involved in the correlation path are characterized by the 

integer l. 

(ii) Case 2 (see Figure 7) 

Now we impose l0,0 = l. The work is strictly similar but the 

correlation path concerns the vertical bonds between sites 

(0,0) and (k,0) for which l'K,0 = l ±1 (1≤K≤k) and the 

horizontal ones between sites (k,0) and (k,k') for which lk,K' = l 

±1 (0≤K'≤k'−1). 

(iii) Case 3 (see Figure 7) 

This case is a mix of cases 1 and 2. At each current site 

(i,j) belonging to the correlation domain we can have li,j = l 

±1, l'i+1,j = l or l'i+1,j = l ±1, li,j = l. 

Due to the fact that it is impossible to go backwards when 

the integration process has been carried out any loop of the 

correlation path is forbidden. In addition the expression of 

the numerator of the spin-spin correlation is independent of 

the bond orientation chosen for the integration process i.e., 

between sites (0,0) and (k,k') or vice versa. 

We conclude that 

(i) all the correlation paths contain the same number of 

hori zontal and vertical bonds; as a result all these paths show 

the same expression i.e., all the spin-spin correlations show a 

unique expression, as expected for this kind of lattice; 

(ii) these correlation paths correspond to the shortest 

possi- 

ble length through the bonds involved between sites (0,0) and 

(k,k'); their total number is simply n =
'

'

k k

k

 
 
  
 

+
; thus there are 

nl+1 = n paths whose bonds are characterized by the integer 

l+1 and nl−1 = n paths showing bonds characterized by l−1; 

they have the same weight wl+1 = wl−1 = nl±1/2n = 1/2 (l > 0). 

In the particular case l = 0 w1 = 1, w−1 = 0. 

Theorem 2 

As loops are forbidden for all the correlation paths these 

paths have the same length inside the correlation domain. 

This length is the shortest possible one through the lattice 

bonds between any couple of correlated sites. Each path 

respectively involves the same number of horizontal and 

vertical bonds as the horizontal and vertical sides of the 

correlation rectangle, for a 2d-infinite square lattice. 

As a result the spin-spin correlation 0,0 , '.z z
k kS S< >  can be 

written: 

2
2

8
4

0,0 , '

0

(4 )
.

(0)

N
z z t N

k k l
N l

S S z
Z

π ∞+

=
×< >= ∑  

( ) ( ) ( ) ( )' '2 2
1 1 1, 1 2, 1 1 1 1, 1 2, 1

k k k k

l l l l l l l lw K P P w K P P+ + + + − − − −
 × +
  

, 

k > 0, k' > 0,

 

as N → +∞                         (49) 

where wl+1 = wl−1 = 1/2 (l > 0), w1 = 1 and w−1 = 0 (l = 0) and 

with 

( ) ( ), 1 2l l l l lz F J J= β βλ λ ,
24

0

(0)N
t N

l

l

Z z
∞+

=
=∑ , 

, 1, 1 1, 1
1 1 1

1, 1 , ,

l l l l l l
l l l

l l l l l l

F f f
K C C

f F F

± + ± −
± + −

± ±

 
= +  

 
, 

( )
( )

1, 1 1
, 1

,

l l l i
i l

l l l i

f J
P

F J

λ
λ

± ± ±
±

−β
=

−β
, i = 1,2.                 (50) 

The integrals Fl,l and fl±1,l±1 are given by equations (20) and 

(48). In the previous equation the special notation 

0

t

l

∞+

=
∑  has 

been defined after equation (29) but here it concerns the new 

l-eigenvalues Pi,l±1. Finally, owing to equation (32), one can 

express 0,0 , '. k k< >S S . 

3.4. Properties of Spin-Spin Correlations 

Due to the classical nature of spin momenta (cf equation 

(6)), we have seen that the full lattice operator ex
exp( )H−β  

can be written as the product 
ex, ex,

exp( ) exp( )
H V

H Hβ β− −  

where
ex,

exp( )
H

Hβ−  and 
ex,

exp( )
V

Hβ−  are the respective 

operators of the set of horizontal and vertical lattice lines. As 

a result each term of the l-summation giving ZN(0) i.e., each 

l-eigenvalue, appears as the product of the corresponding 
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eigenvalues ( ) ( )l H l VJ Jλ β λ β− − . This property also exists 

for the spin-spin correlation. Indeed, if examining the closed-

form expression given by equation (49), it can be written 

24
0,0 , '

0 1

1
.

(0)

t N
k k l

N l

z
Z ε

∞+

= =±

< >= ×∑ ∑S S

0,0 ,0 0,0 0, '. .k l k lε ε+ +× < > < >S S S S ,            (51) 

 

Figure 8. Plots of the ratios R = fl+1,l+1/Fl,l, fl−1,l−1/Fl,l and fl+1,l-1/Fl,l where 

integrals fl+ε,l+ε' (ε = ±1, ε' = ±1) are defined by equations (10), (20), (46) 

and (48) as well quantities Kl+1 and Kl−1 given by equation (50). 

 

Figure 9. Plots of log10(kBTCO/|J|), log10(kBTCO,l+1/|J|) and log10(kBTCO,l−1/|J|); 

the crossover temperatures TCO, TCO,l+1 and TCO,l−1 are defined by the 

transcendental equations (26) and (52), respectively. 

with ( )0,0 , ,. 3u v l l l i lw K P
α

ε ε ε ε+ + + +< > =S S , i = 1, u = 0, v = 

α = k'; i = 2, u = α = k, v = 0. The factor 
24 / (0)N

Nlz Z =
2 24 4/N N

l l

l

z z∑ appears as the weight of the l-state. 

When d = 1 (D = 2) there is no path characterized by l−1 

and no l-summation (in the thermodynamic limit the l-series 

is restricted to l = 0) so that equation (51) reduces to 

0 0 1. . .k u u k+< >=< >< >S S S S S S . In the case d = 2 (D = 3) 

this property only concerns the l-current term 

0,0 ,0. k l ε+< > =S S 0,0 ,0 1,0 ,0. .u l u k lε ε+ + +< > < >S S S S and 

0,0 0, '. k l ε+< > =S S 0,0 0, 0, 1 0, '. .v l v k lε ε+ + +< > < >S S S S i.e., for 

each l-state of the whole lattice. 

As a result, if considering the susceptibility 2Gχ β= ×  

0,0 , '

'

. k k

k k

× < >∑∑ S S of a lattice composed of spin momenta 

showing the same Landé factor G, one can predict that it can 

be put under the form χ ∼
24

0 1

N
l l

l

z

+∞

+
= =±
∑∑ ε

ε
χ , with l εχ + =

H V
l l+ +ε εχ χ  where H

l +εχ (respectively, V
l +εχ  ) is the l-

contribution to the susceptibility of the full horizontal 

(respectively, vertical) lattice lines. The study of χ is out of 

the present article framework. 

Now we have to examine the ratios Pi,l+1 and Pi,l−1 (i = 1,2) 

defined by equation (50). For physical reasons we must have 

|Pi,l±1| ≤ 1. In Figure 8 we have reported the various ratios of 

integrals fl+1,l+1/Fl,l, fl−1,l−1/Fl,l and fl+1,l−1/Fl,l. We have fl+1,l+1/Fl,l 

> 1, but fl−1,l−1/F,l,l < 1, fl+1,l−1/Fl,l < 1 as well as Kl+1 < 1 and 

Kl−1 < 1. 

As a result, for a given relative temperature β|Ji| = |Ji| /kBT 

(i = 1,2), we always have Il+3/2(β|Ji|) < Il+1/2(β|Ji|), with 

fl+1,l+1/Fl,l > 1, so that |Pi,l+1| < 1 or |Pi,l+1| > 1 which has no 

phy-sical meaning. Similarly we have Il−1/2(β|Ji|) > Il+1/2(β|Ji|), 

with fl−1,λ−1/Fl,l < 1, and we can deal with |Pi,l−1| < 1 or |Pi,l−1| > 

1. 

We proceed as for the thermal study of the current term of 

the l-polynomial expansion of ZN(0) where we have defined a 

crossover temperature TCO through equation (26) so that the 

eigenvalue ( )
il iJλ β is dominant within the range [ ,

] and becomes subdominant outside this range. 

Similarly, for studying the ratio ( ) ( )1 /l lJ J±λ β λ β  

appearing in |Pi,l±1|, we impose max(|Pi,l±1|) = 1. As a result, 

from equation (50) we respectively define two new crossover 

temperatures TCO, l+1 and TCO, l−1 by 

( )
( )

B1 CO, 1 ,

1, 1B CO, 1

/

/

l l l l

l ll l

J k T F

fJ k T

+ +

+ ++
=

λ

λ
,

( )
( )

B1 CO, 1 ,

1, 1B CO, 1

/

/

l l l l

l ll l

J k T F

fJ k T

− −

− −−
=

λ

λ
 (52) 

in the simplest case J = J1 = J2 without loss of generality. It 

can be extended to the case J1 ≠ J2. As for equation (26) we 

have numerically solved this transcendental equation. 

We find that |Pl−1| ≤ 1 if T ≤ TCO,l−1 and |Pl−1| > 1 if T > 

TCO,l−1 on the one hand but |Pl+1| ≥ 1 if T ≤ TCO,l+1 and |Pl+1| < 1 

if T > TCO,l+1 on the other one. Thus, this is the competition 

between the smooth decreasing l-law of the ratio fl+1,l+1/Fl,l > 

1 (see Figure 8) which tends towards unity when l → +∞ 

(i.e., when T tends to Tc = 0 K) and the T-law of the ratio 

λl+1(β|J|)/λl(β|J|)  involved in |Pl+1| which is responsible of 

such a crossover. For |Pl−1| the competition is between the 

increasing l-law of the ratio fl−1,l−1/Fl,l < 1 and the T-law of 

the ratio λl−1(β|J|)/λl(β|J|)  > 1. 
Finally, owing to the numerical study reported in Figure 9, 

we have TCO < TCO,l+1 < TCO,l−1. As a result it becomes 

possible to determine the new domains of thermal 

predominance [ 1,lT ± < , 1,lT ± > ] of the eigenvalues |Pl±1|. Their 

detailed classification is out of the framework of the present 

article. When l → +∞ i.e., as T approaches Tc = 0 K, all the l-

eigenvalues become equivalent but a common limit can be 

selected. 

<,il
T

>,il
T



 American Journal of Theoretical and Applied Statistics 2021; 10(1): 38-62 51 

 

3.5. Correlation Length 

The correlation length can be derived owing to equation 

(34). We have 

( ) ( )2

2

1/2

4
1 1 1 1

2 20

4
1 1

0

y yt N x x
l l l l l

l
x y

t N
l l l

l

z N N N N

z D D

∞

∞

+

+ − + −
=

+

+ −
=

  
    
 
     

+ + +
= = +

+

∑

∑
ξ ξ ξ , 

as N → +∞                                (53) 

with on condition that , 1i lP ± ≤ 1 

( ) ( )
1, 1 2, 1

1 11 2 2

1, 1 2, 1

2

1 1

l lyx
l ll

l l

P P
N N D

P P

± ±
± ±±

± ±

 
 + = + 

− −  

, 

( )( )
( )( )

1, 1 2, 12
1 1

1, 1 2, 1

1 1

1 1

l l

l l

l l

P P
D K

P P

± ±
± ±

± ±

+ +
=

− −
.                (54) 

zl, Pi,l+ε (i = 1,2) Kl+ε and the integral Fl,l appearing in zl are 

respectively given by equations (50) and (20) in which li = lj 

= l, m = 0. Kl+ε → 1 as l → +∞. 

In equation (54), if considering the spin-spin correlation 

between first-nearest neighbors derived from equation (49) 

and setting .
0, 0 0,1 1 1 1, 1

z z
S S K P

l l l
< > =± ± ±

, 

0,0 1,0 1.z z
lS S ±< > =  1 2, 1l lK P± ± , the l-contribution to the 

spin-spin correlation is 

( )0,0 0,1 1 1, 1 1 1, 1. / 2z z
l l l l

l
S S f K P K P+ + − −< > = +  for (l > 0) 

( 0,0 1,0.z z

l
S S< >  is derived from 0,0 0,1.z z

l
S S< > by exchanging 

1 against 2); the factor 3f =  can be omitted in equation 

(53). As a result we can write if l → +∞ 

1 1 3
( )

x
x x l
l l x y

l l

N
N N

D D
+ −+ = ,

'

1 1

x
x x l
l l x y

l l

N
D D

D D
+ −+ = , 

1 1 3
( )

y
y y l

l l y x

l l

N
N N

D D
+ −+ = ,

'

1 1

y
y y l
l l x y

l l

N
D D

D D
+ −+ = ,       (55) 

with 

0,0 0,1 0,0 0,1 1 0,0 0,1 11 2 . . .x z z z z z z
l l l

l
D S S S S S S+ −= − < > + < > < > , 

0,0 1,0 0,0 1,0 0,0 1,01 11 2 . . .y z z z z z z
l ll l

D S S S S S S+ −= − < > + < > < > . (56) 

It is not necessary to express x

lN  and y

lN  because the 

behavior of the correlation length ξ near Tc = 0K is 

essentially ruled by its denominator. Due to its definition (cf 

equations (32)-(34)) 0,0 , '.z z
k kS S< >  can be replaced by 

0,0 , '. k k< >S S  in equation (53). ξ exactly shows the same 

thermal crossovers as 0,0 , '. k k< >S S . Thus, in the 

temperature range [Tl,<,Tl,>] where the l-eigenvalue of the 

spin-spin correlation is dominant, we have as l → +∞ 

,x l
x x

l

N

D
ξ ≈ ,

,y l

y y
l

N

D
ξ ≈ , , '

x
l

x l x
l

N
N

N
= , , '

y
l

y l y
l

N
N

N
= , 

T∈[Tl,<,Tl,>].                                 (57) 

Near Tc = 0K, we have previously shown that l → +∞. 

Under these conditions 0,0 0,1 0,0 0,1 1. . 1l±< > ≈ < > ≈S S S S  and 

0,0 1,0 0,0 1,0 1. . 1l±< > ≈ < > ≈S S S S  so that 

( ), 0,0 0,1/ 2 1 .x x lNξ ≈ − < >S S , ( ), 0,0 1,0/ 2 1 .y y lNξ ≈ − < >S S , 

as l → +∞.                                    (58) 

It means that the spin-spin correlation between first-

nearest neighbors plays a fundamental role near the critical 

point. This is a hidden consequence of equation (51) itself 

derived from the classical character of spin momenta (cf 

equation (6)). 

4. Low-temperature Behaviors 

4.1. Preliminaries 

For sake of simplicity we again reduce the study to the 

simplest case J = J1 = J2 without loss of generality. We 

examine the low-temperature behavior of the ratios 

Pi,l+ε involved in the spin-spin correlation (cf equations (49), 

(50)), with here Pi,l+ε = Pl+ε (i = 1,2). 

We first consider the ratio fl+ε,l+ε/Fl,l  (ε=±1) where integrals 

Fl,l  and fl+ε,l+ε are respectively given by equation (48) with 

ε = ε’ = 0 for Fl,l. The l-behavior of each of these ratios has 

been reported in Figure 8. fl+1,l+1/Fl,l > 1 and fl−1,l−1/Fl,l < 1 but 

fl±1,l±1/Fl,l → 1 as l→+∞ i.e., near the critical temperature Tc 

=0 K. Indeed, if expressing the spherical harmonics involved 

in the definition of integral Fl,l given by equation (10) in 

which m = 0, we have in the infinite l-limit [26] 

( ),0

1 3
, 1 cos (2 1)

8 2 4sin
lY l

l

θ π
π θ

   θ φ ≈ − + −   
   

 

2

1 3 1
cos (2 3)

8 sin 2 4
l O

l l

θ π
θ

   − + − +   
   

, 

as l → +∞, ε' ≤ θ ≤ π − ε, 0 ' 1/ lε< << , 0 ≤ ϕ ≤ 2π. (59) 

and the exact asymptotic result: 
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,

2
,

1
1

l l

l l

f
O

F l

ε ε+ +  → +  
 

, ε = ±1, as l  → +∞.        (60) 

Then, if taking into account equations (8) and (50), Pl±1 

behaves as 

 

Figure 10. Thermal variations of |ζ| given by equation (62), for various 

values of lkBT/|J| = 1/|z|. 

( )
( )

1
1

l
l

l

I J
P

I J

β
β

±
±

−
≈

−
, as T → 0 (l → +∞, J1 = J2). (61) 

Intuitively, in the low-temperature limit, we must consider 

the three cases β|J| >> l, β|J| ∼ l and β|J| << l. The behavior of 

the Bessel function ( )lI J−β  in the double limit l  → +∞ 

and β|J| → +∞ has been established by Olver [27]. In 

previous papers [24] we have extended this work to a large 

order l (but not necessarily infinite) and to any real argument 

β|J| varying from a finite value to infinity. The study of the 

Bessel differential equation in the large l-limit necessitates 

the introduction of the dimensionless auxiliary variables: 

2

2
1 ln

1 1

zJ
z

J z
ζ

  
 = − + +  

  + +  

,
J

z
l

β
=  (62) 

which corresponds to the following transform of the 

argument of the Bessel function 

J z l lβ ζ= ≈ , as T → Tc = 0 K.      (63) 

Thus |ζ| plays the role of the inverse of an effective dimen-

sionless coupling near Tc. The correspondence with the 

writing of Chakravarty et al. is |ζ| = t
−1 

[6]. The numerical 

study of |ζ| is reported in Figure 10. We observe that there are 

two branches. |ζ| vanishes for a numerical value of |z0|−1 
very 

close to π/2 so that there are 3 domains which will be 

physically interpreted in next subsection. Let T0 be the 

corresponding temperature 

B 0

2

k T
l

J

π= .                             (64) 

In the formalism of renormalization group T0 is called a fixed 

point. In the present 2d case we have l → +∞. We then derive 

that T0 → Tc = 0 K as l → +∞ so that the critical 

temperarature can be seen as a non trivial fixed point. In 

other words it means that all the thermodynamic functions 

can be expanded as series of current term |T − T0| near T0 ≈ Tc 

= 0 K, in the infinite l-limit. Finally Figure 10 is nothing but 

the low-temperature diagram of magnetic phases and |ζ| 

defined by equation (62) gives the analytic expression of 

branches. 

For convenience, we introduce the dimensionless coupling 

constant g at temperature T as well as its reduced value g : 

B
k T

g
J

= ,
c

T
g

T
= .                           (65) 

g measures the strength of spin fluctuations. g  
is a universal 

parameter and is l-independent. At the critical point T0 = Tc 

we have g  = 1. Owing to equation (64) the critical coupling 

gc can be written as: 

; c
2

g
l

π= or c
2

g l
π= .             (66) 

Chubukov et al. have found that, at the critical temperature 

Tc, the critical coupling is gc = 4π/Λ where Λ = 2π/a is a rela-

tivistic cutoff parameter (a being the lattice spacing) [10]. 

Thus Λ−1
 appears as a length scale. Haldane has evaluated gc 

in the case of a classical spin lattice [11,12]. He proposed 
H

c 2 /g d a S=
 
or equivalently H

c 2 /g a S=  if referring to the 

vertical rows or horizontal lines of the 2d-lattice charac-

terized by the same exchange energy J = J1 = J2. In our case S 

= 1 so that if comparing both results for gc 

H
c 2g a= ; c

4
g =

Λ
π

 or c 4g Λ = π , 
2

a
Λ = π

.     (67) 

At this step the question is: how to relate the results given 

by equations (66) and (67) i.e., gcl = π/2 and gcΛ = 4π? 

In the first case gcl = π/2 is obtained by a pure numerical 

method because this is the zero of the function |ζ| = f(1/|z|) 

given by equation (62) with 1/|z| = gl. The second case gcΛ  = 

4π supposes to take into account the volumic density of 

gc. Ac-cording to Chubukov et al., for D = 3, gc is such as 

1 3 2 3
c (2 )g P d Pπ− − −= ∫ (for D = 3) where P = (ℏk,ℏω/c) is the 

relativistic momentum associated with the spin wave of wave 

vector k and energy ℏω. First we examine the problem of 

volumic density. As we focus on the static aspect i.e., the 

volume available to the spin momentum, the relativistic 

momentum P/ℏ reduces to S (in ℏ-unit). As a result the 

extremity of the classical spin can sweep the surface of a 

(D−1)-dimensional sphere i.e., a d-sphere. Thus the ele-

mentary volume is d
d
S = sdS

d−1
dS where sd = 2πd/2

/Γ(d/2) is 

the surface of the d-sphere. If referring d
d
S per unit angle we 

have d
d
S/(2π)

d
 = [sd/(2π)

d
]S

d−1
dS. Finally we must take into 

account the multiplicity of the spin 2S + 1 ∼ 2S as S >> 1 so 

that the final elementary volume per degree of multiplicity is 

d
d
S/2S(2π)

d
 i.e., dVS = [sd/2(2π)

d
]S

d−2
dS. Due to our con-

J

Tk
g cB

c =
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ventional writing S varies between 0 and unity; the 

integration gives VS = sd/2(2π)
d
(d − 1) and 

1
c

2( 1)
S

d

d
g V

K

− −= = ,
1

1 1 /22 ( / 2)
(2 )

d dd
d d

s
K dπ

π

−
− − 

= = Γ 
  

. (68) 

This is precisely the result derived by Chakravarty et al. as 

the mathematical solution of the recursion relations esta-

blished between g and t = |ζ|
−1 

through a one-loop renorma-

lization process [6]. Thus gc = 0 when d = 1 as expected and 

gc = 4π when d = 2. 

Second, for obtaining a relation between l and Λ, we must 

also consider the volume of the lattice unit cell of spacing a. 

For sake of simplicity we restrict to the case D = 3. In 

equation (66) we introduce the density of exchange energy 

|J|S(S+1)/a
2
 ∼ |J|S

2
/a

2
 = |J|/a

2
 as S = 1 in our conventional 

writing. In the associated D-space-time (D = 3) the volume of 

the phase space is Vφ = VSa
3
 = a

3
/4π. It means that the value 

of g per phase space volume is g/ Vφ = (4π/a
3
)g. 

As a result g = gcl given by equation (66) becomes g = 

(4π/a
3
).lkBT/(|J|/a

2
) → (4πl/a).kBTc/|J| i.e., g = 2lΛgc = * *

cg Λ
as T0 → Tc = 0 K so that the new scale is 

Λ*
 = 2lΛ >> Λ as  l → +∞; 

*

*

2

a

πΛ = ,
*

*
2

a
l

a

Λ= =
Λ

. (69) 

Thus the l-index of the Bessel functions appears as the 

ratio of two different scales of reference Λ and Λ*
, 

respectively associated with the lattices of spacing a and a
*
= 

a/2l << a. 

We introduce: 

(i) the thermal de Broglie wavelength λDB; 

(ii) the low-temperature spin wave celerity 

2 2 /c J Sa= ℏ  

along the diagonal of the lattice of spacing a if J = J1 = J2, 

with ( 1) 1S S + = ; if J1 ≠ J2 the celerity components become 

2 /i ic J a= ℏ
 
along the lattice horizontal lines (i = 1, x-

axis) or the vertical ones (i = 2, y-axis) and the propagation 

axis shows the angle α with respect to the x-axis such as 

tanα = cy/cx = |J2/J1|; 

(iii) the slab thickness Lτ of the D-space-time along the iτ- 

axis (D = 3): 

DB 2 Lτλ π= , 
B

c
L

k T
τ = ℏ .                 (70) 

By definition we must have 

λDB>> a (71) 

i.e., Λ = 2π/a >> 2π/λDB or equivalently with Λ*
 = 2lΛ 

Λ∗ >> Λ >> Lτ
−1

 or Λ*−1 << Λ−1 << Lτ.            (72) 

Thus Λ−1
 (or Λ*−1

) appears as a short distance cutoff. No 

such intrinsic cutoff exists for the imaginary variable τ. At 

the critical point Tc = 0 K λDB → +∞ (as well as Lτ) and spins 

are strongly correlated. For T > Tc λDB and Lτ  become finite 

and diminish as the spin-spin correlation magnitude when T 

increases. The adequate tool for estimating this correlation 

between any couple of spins is the correlation length ξ. As a 

result λDB (or Lτ) appears as the good unit length for 

measuring ξ. 

Under these conditions we generalize the application of the 

cutoff parameter Λ. |z| defined by the second of equation (62) 

can be rewritten if using equations (65) and (69) 

*
* c

*
| |

J z
z

g

β
= =

Λ
, 

*
c

1

4
z =

π
, Λ∗

 = 2lΛ           (73) 

and, for a lattice such as J = J1 = J2, 
* *| |z z l JΛ = = β  

finally appears as 

* *| |
2 2

L
z J

a

τβΛ = =                    (74) 

owing to the relation 2 2c J Sa=ℏ  (with S = 1). For a 

general lattice such as J1 ≠ J2 one can use the relation 

2u ic J Sa=ℏ  where cu is the spin-wave celerity along the 

x- (u = x, i = 1) or the y-axis (u = y, i = 2). As a result the 

previous equation is slightly modified. Finally the ratio 
* *

B/ k TΛ = Λβ can be seen as a new temperature scale. 

If examining equation (74) and noting that J ≈ Λ ≈β ζ
* *

| |Λζ near Tc = 0 K (cf equation (62) in the Λ- or in the Λ*
-

scale) with *
c 2 2g a=  (along the diagonal of the lattice) we 

can write 
* * *
c2 2 | |a J g L≈ Λ = τβ ζ  i.e., with g = * *

cg Λ in 

the Λ*
-scale 

* * *| |g LΛ ≈ Λτζ .                          (75) 

LτΛ* 
= 2λDBl/a = λDB/a

*
 (cf equation (69)) is the 

dimensionless slab thickness of the D-space-time (with D = d 

+ 1) in the time-like direction. We retrieve the result found by 

Chakravarty et al. i.e., / | |g t g cζ β= = ℏ when establishing 

the recursion relations between g and t through a one-loop 

renormalization process, thus allowing to analyze the equilib-

rium magnetic properties of the 2d-nonlinear ⌠  model [6]. 

The result given by equation (75) is universal near Tc so 

that at the critical point we can write 

c c c c B c/ | | /g t g c k Tζ= = ℏ . Owing to equation (68) and the 

fact that, when d = 2 (D = 3) c| |ζ diverges (tc = 0) when g 

tends to Tc = 0 K. The unique solution for tc is 

c c

2
| |

d

d
t

K
ζ −1 −= = , 1 1 / 2

2 ( / 2)
d d

dK d
− −= Γπ .            (76) 

Thus we again retrieve the result of Chakravarty et al. [6]. It 

means that, when d > 2, tc and c| |ζ  become finite. 

Finally, if considering the correlation length as a scaling 

parameter near the critical point Tc = 0 K, its measure ξ along 

the diagonal of the lattice (if J = J1 = J2) characterized by a 
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spacing a (i.e., in the Λ-scale) is ξΛ
 = ξ 2 2a (or ξΛΛ=

4 2ξ π ) and τξ = ξLτ along the slab thickness of the D-

space-time (i.e., the iτ-axis), due to scale invariance. These 

respective notations can be generalized to a lattice such as J1 

≠ J2 and for any renormalizable physical parameter. As a 

result we have the dimensionless relations near Tc = 0 K 

2 2 La

τ

τ

ξξξ Λ= = , 
2 2

L
J

a

τ τξ β
ξΛ

= = , J = J1 = J2, 

as T → Tc = 0, 

,

2

u
u

a L

τ

τ

ξ ξξ Λ= = , 
, 2

i
u

L
J

a

τ τξ β
ξΛ

= = , J1 ≠ J2 

(u = x, i =1; u = y, i = 2), as T → Tc = 0.        (77) 

4.2. Low-temperature Behaviors of the Spin-Spin 

Correlation 0,0 . k,k'< >S S  

As previously seen (cf equations (49), (50)) the spin-spin 

correlation is expressed owing to the ratios 

1 11 ( ) / ( ) ( ) / ( )
l l l llP zl zl I zl I zl± ±± ≈ =λ λ  near the critical point 

Tc = 0 K. As the argument zl is replaced by 
* *

z Λ  it is easy to 

show that, owing to the behavior of Bessel functions when 

l→+∞ (Λ∗→+∞),
1
( ) / ( )

l l
zl zl±λ λ ∼ * *1

* * * *( ) / ( )z zλ λΛ ± ΛΛ Λ  i.e., 

Pl±1∼ *
1

P
Λ ±

 as T → Tc = 0 (see Appendix A.3). Simultaneously 

|ζ|l ∼ * *
|| Λζ . 

At first sight all these quantities seem to strongly depend 

on Λ*
 whereas they must show a universal behavior near the 

critical point. As a result scaling parameters i.e., parameters 

which are Λ*
-independent must be introduced so that the 

spin-spin correlation as well as the correlation length are 

scale-independent near Tc = 0 K, as expected. 

Chakravarty et al. [6] have introduced the physical para-

meters ρs and ∆ defined as: 

s (1 )J gρ = − , ( 1)J g∆ = − .              (78) 

In the 2d-case ρs and ∆ have the dimension of an energy 

JS
2
 (in our case J). ρs is the spin stiffness of the ordered 

ground state (Néel state for an antiferromagnet) and ∆ is the 

T=0-energy gap between the ground state and the first 

excited state. In the framework of the classical spin 

approximation the spectrum is quasi continuous. In our case 

it means that ∆ is very small. 

At the critical point Tc = 0 K g = 1: ρs and ∆ vanish and, 

near critically, we have ρs << |J| and ∆ << |J| where |J| finally 

appears as the bare value of ρs and ∆ i.e., their value at 0 K. 

For all the previous reasons we are then led to introduce the 

following parameters: 

s

B c

1 1

k T g g
= −

ρ  (T < Tc) ,
B c

1 1
4

k T g g
π
 ∆ = − 
 

 (T > Tc) (79) 

where the factor 4π appears in ∆ for notational convenience. 

As a result we can define the following scaling parameters: 

B
1

s

k T
x

ρ
=

2π
, 

2

Bk T
x =

∆
                              (80) 

where the factor 2π also appears for notational convenience. 

As ρs and ∆ vanish at T0 = Tc, x1 and x2 become infinite at this 

fixed point. They are scaling parameters as well as * *
c| | /z z  

and * *
|| Λζ  (see Appendix A.2). From a physical point of 

view and as noted by Chakravarty et al. [6]
 
as well as by 

Chubukov et al. [10], these parameters control the scaling 

properties of the magnetic system. 

There is an analytical continuity between x1 and x2 when 

T0 = Tc. As a result there are only 3 domains of 

predominance: x1 
<< 1 (T < Tc and |ζ|/4π < 1− g , Zone 1) 

i.e., ρs >> kBT, x2 
<< 1 (T > Tc and |ζ|/4π < g − 1, Zone 2) 

i.e., ∆ >> kBT; finally x1 
>> 1 (T <  Tc and |ζ|/4π > 1− g , 

Zone 3) i.e., ρs << kBT and x2 
>> 1 (T >  Tc and |ζ|/4π > g − 1, 

Zone 4) i.e., ∆ << kBT. Along the line T = Tc ( g  = 1), we di-

rectly reach the Néel line (see Figure 11). Each of these 

domains previously described corresponds to a particular 

magnetic regime. The physical meaning of each regime can 

be derived from the low-temperature study of the ratio 

* 1
PΛ ± ≈  * *

* * * *

1
( ) / ( )z zΛ ± ΛΛ Λλ λ vs x1 or x2. 

The first step consists in expressing * *
|| Λζ  appearing in 

*
1

P
Λ ±

 as a scaling parameter vs x1 or x2 (cf equation (A.22)). 

In Appendix A.2 we have rigorously shown that 

( )1* * exp 1/
| | 2arcsinh

2

x
ζ

 −
Λ ≈   

 
, (Zones 1 and 3), (81) 

( )2* * exp 1/ 2
| | 2arcsinh

2

x
ζ

 
Λ ≈   

 
, (Zones 2 and 4). (82) 

The corresponding behaviors are reported in Figure 12. 

The asymptotic expansions of * *
|| Λζ  can then be derived for 

the four zones of the magnetic diagram. We have 

 

Figure 11. Thermal variations of |ζ|/4π vs g  respectively defined by 

equations (62) and (65) and domains of predominance vs dimensionless 

parameters x1 and x2 defined by equation (80). 
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Figure 12. Plot of |ζ*|Λ* vs the scaling parameters x1 and x2 respectively 
defined by equation (80)-(82). 

 

( )* *
1| | exp 1/ xΛ ≈ −ζ , x1 << 1 (Zone 1); (83) 

( )* *
2

2

1
| | 2exp 1/ x

x
ζ Λ ≈ + − , x2 << 1 (Zone 2); (84) 

* *

1

1 5 2
| | 2ln

2 5x
ζ

 +Λ ≈ −  
 

, x1 >> 1 (Zone 3), (85) 

* *

2

1 5 1
| | 2ln

2 5x
ζ

 +Λ ≈ +  
 

, x2 >> 1 (Zone 4). (86) 

At the common frontier between Zones 3 and 4, when 

directly reaching Tc, x1 and x2 become infinite and the 

respective expressions of * *
|| Λζ  show the common limit: 

* *
c

1 5
| | 2ln 0.962 424

2
C ζ

 += Λ = =  
 

, x1 → +∞, x2 → +∞. 

(87) 

The ratio α = (1 5 ) / 2+ is the golden mean. As a result, 

starting from a closed expression of |ζ|
 
given by equation 

(62) we directly obtained for * *
|| Λζ  the result of Chubukov 

et al. derived from a renormalization technique and called 

Xi(xi), i = 1,2 [10]. 

Consequently, in a second step, the ratio 

* * *
* * * *

1 1
( ) / ( )P z zΛ ± Λ ± Λ≈ Λ Λλ λ  can be expressed vs x1 or x2 

near Tc = 0 K as well as the spin-spin correlation 

0,0 . k,k'< >=S S 0,0 , '3 .z z
k kS S< >  (cf equations (32) and (49)). 

This work is detailed in Appendix A.3 where it appears that, 

for physical reasons explained at the end of this appendix, 

*
1

P
Λ ±

 must be renormalized (see Appendix A.4). 

If
1

PΛ±ɶ
ɶ is the renormalized expression of *

1
P

Λ ±
, with the 

condition 
1

PΛ±ɶ
ɶ → 1 as T → Tc = 0 K , the low-temperature 

renormalized spin-spin correlation can be written as the fol-

lowing asymptotic limit 

' '
. .0,0 , ' 0,0 , ' 1 1

1
...

2

~ ~
k k k k

k k k k P P+ +
Λ+ Λ−Λ

 < > ≈ < > ≈ + + ɶ ɶɶ
ɶ ɶS S S S , as 

T → 0, Λɶ →+∞                              (88) 

with the correspondence 
* *| |J z zβ = Λ = Λɶɶ ( Λɶ = αΛ*). The 

low-temperature expressions of 
1

PΛ±ɶ
ɶ are given by equation 

(A.25) for the zones 1 to 4 of the magnetic phase diagram. 

We have shown in Appendix A.4 that the key renormalized 

spin-spin correlation between first-nearest neighbors 

.0,0 0,1

~
< >S S  can be put under the following form if J = J1 = 

J2 

. .0,0 0,1 0,0 0,1

~ ~
Λ< > ≈ < > ≈ɶS S S S  

1 1

ln (| | )1
...

2 (| | )

d zJ
P P

J d z

Λ
Λ+ Λ−

Λ
 + + ≈ −  Λ

ɶ

ɶ ɶ

ɶɶ
ɶ ɶ

ɶɶ

λ
, as T → 0   (89) 

where (| | )zΛ Λɶ
ɶɶλ  is the dominant eigenvalue in the infinite Λɶ -

limit or equivalently 

.0,0 01 1 ( ) ...
~

i

J
f x

J
< > ≈ − − +  S S , as T → 0, (90) 

with 

1
1 1 1

8
( ) 1

2

x
f x

e

π ζ  
 
 

= Λ −ɶ ɶ ,
* *

1 1 | |ζ ζΛ ≈ Λɶ ɶ , Zone 1 (x1 << 

1), 

* *
2 2 2( ) | |f x = Λ ≈ Λɶ ɶζ ζ , Zone 2 (x2 << 1) , 

* *
3 3 3( ) | |f x = Λ ≈ Λɶ ɶζ ζ , Zone 3 (x1 >>1), Zone 4 (x2 >>1), 

as T → 0,                                     (91) 

due to the fact that * *
|| Λζ  is a scaling parameter given by 

equations (83)-(86) and where 
1 2,Λ Λɶ ɶ and 

3Λɶ  are defined in 

equation (A.25). 

Thus, in Zone 1 (x1 << 1), f(x1) → 0 as T → 0 and 

.0,0 0,1< >S S  → 1. In Zone 2 (x2 << 1), due to equations 

(A.25) and (84) 
* *

2 2 2xζ ζΛ ≈ Λ ≈ɶ ɶ

2 21 2 exp( 1/ ) 1x x+ − → , f(x2) → 1 as T → 0 and 

.0,0 0,1< > ≈S S 2 2exp( 1/ ) 0x x− → . We tend towards an 

assembly of noncorrelated spins. In Zones 3 (x1 >> 1) and 4 

(x2 >> 1) .0,0 0,1< >S S  → 1 as in Zone 1. As a result this is 

the low-temperature behavior of the correlation length ξ 

which is going to allow the characterization of the magnetic 

order nature. 

4.3. Low-temperature Behaviors of the Correlation Length 

If using the expression of the correlation length given by 
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equation (53) as well as the scale invariance property near Tc 

= 0 K given by equation (77) the measure ξ of ξx and ξτ is 

such as 

*, , 1 * * 1

*
B

( ( )) (| | )
2 2 /2

x x x
if x

a a c k Ta

τ
ξ ξ ξ ξξ ζΛ Λ − −= ≈ = ≈ = = Λ

ℏ
, 

i = 1,3, as T → 0                              (92) 

where a is the lattice spacing as well as a
*
=a/2l; |ζ*

|Λ*
 is 

defined by equations (81) and (82). It means that we can 

immediately derive the low-temperature correlation length ξ. 

Recalling that x1 = kBT/2πρs where ρs is the spin stiffness, 

the lattice spacing a is such as a = ℏc/2|J| with 
s

J≈ρ
 
as g

= T/Tc vanishes with T near Tc = 0 K. For a lattice of spacing 

a we finally derive in Zone 1 owing to equations (91) and 

(92): 

s B

s B s

2
exp 1

8 2 4
x

k Te c

k T

πρξ
πρ πρ

  
    

  
= +ℏ

, x1 << 1 (Zone 1), as T 

→ 0                                        (93) 

We exactly retrieve the result first obtained by Hasenfratz 

and Niedermayer [15] and confirmed by Chubukov et al. 

[10]. This characterizes the Renormalized Classical Regime 

(RCR) for which ρs >> kBT: the divergence of ξ describes a 

long-range order when T approaches Tc = 0 K. Spins are 

aligned (J < 0) or antialigned (J > 0) inside quasi rigid quasi 

independent Kadanoff square blocks of side ξ if J = J1 = J2. 

In Zone 2 (x2 << 1) where x2 = kBT/∆ we have owing to 

equations (91) and (92): 

c≈
∆
ℏ

τξ , x2 << 1 (Zone 2), as T → 0. (94) 

We deal with the Quantum Disordered Regime (QDR) cha-

racterized by ∆ >> kBT. Owing to equation (80) we have ∆ = 

kBT/x2 so that ξτ ≈ Lτx2 << Lτ as x2 << 1. Equivalently, due to 

the fact that Lτ = B/c k Tℏ and a = ℏc/2|J| we have ξx  ≈ 2ax2 

 << 2a: we then pass from no T=0-order to a short-range 

order when T increases. The magnetic structure is made of 

spin dimers or aggregates of spin dimers organized in Kada-

noff blocks of small size ξτ  that we can assimilate to blobs 

weakly interacting between each others. We deal with a spin 

fluid. The detailed study is out of the framework of the 

present article. From a formal point of view it is often phra-

sed in term of Resonating Valence Bonds (RVB) between 

pairs of quantum spins (considered here in the classical spin 

approximation) [29,30]. In Zones 3 (x1 >> 1) and 4 (x2 >> 1) 

we have 

1

B 1

2
1

5

c
C

k T C x
τξ −

 
≈ +  

 

ℏ
, x1 >> 1 (Zone 3), 

1

B 2

1
1

5

c
C

k T C x
τξ −

 
≈ −  

 

ℏ
, x2 >> 1 (Zone 4) as T → 0 (95) 

where C is given by equation (87). We now deal with the 

Quantum Critical Regime (QCR). In Zone 3 we have ρs << 

kBT whereas in Zone 4 ∆ << kBT. The divergence of 

ξ describes a medium-range order when T approaches Tc = 0 

K. Spins are aligned (J < 0) or antialigned (J > 0) inside quasi 

rigid quasi independent Kadanoff square blocks of side ξ if J 

= J1 = J2. But, if comparing with the Renormalized Classical 

Regime (RCR) and the Quantum Disordered one (QDR), we 

have ξQDR < ξQCR < ξRCR (cf Figure 14). Thus Kadanoff blocks 

show a smaller size when passing from Zone 1 to Zone 2 

through Zones 3 and 4. 

As a result each behavior of the correlation length charac-

terizes a magnetic regime. All the predominance domains of 

these regimes are summarized in Figure 13. 

 

Figure 13. Magnetic regime for each domain of predominance of |ζ|/4π vs 

g  respectively defined by equations (62) and (65); the abbreviations stand 

for Renormalized Classical (RC), Quantum Critical (QC) and Quantum 

Disordered (QD) regimes. 

At the frontier between Zones 3 (ρs << kBT) and 4 

(∆ << kBT) i.e., along the vertical line reaching the Néel line 

at Tc, x1 and x2 become infinite so that: 

1

B

c
C

k T
τξ −≈ ℏ

, T = Tc.                          (96) 

i.e., τξ  ≈ Lτ as C
−1

 is close to unity, as predicted by the renor-

malization group analysis [6,10]. As τξ diverges according to 

a T
−1

-law the critical exponent is: 

ν = 1                                          (97) 

in the D-space-time. The low-temperature behaviors of ξ 

have been reported in Figure 14. 

Owing to previous results the correlation length can also 

be written as 

.0,0 0,1

1

1

~xξ ≈

− < >S S

, as T → 0,                 (98) 

where .0,0 0,1

~
< >S S  is the renormalized spin-spin correlation 

between first-nearest neighbors (0,0) and (0,1) as J = J1 = J2, 

expressed  near  Tc = 0 K. We  retrieve  the result  predicted  

in: 
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Figure 14. Low-temperature behaviors of the correlation length ξ = ξξ/2a = 

ξτ/Lτ  where a is the lattice spacing; Lτ the slab thickness and |ζ*|Λ* are 

defined by equations (70), (81) and (82). 

equation (58). If using the expression of .0,0 0,1

~
< >S S  given 

by equation (89) the correlation length ξx can also be 

expressed as 

1

ln ( )
1

( )

x y
d |z|

d |z|

ξ ξ
Λ

= ≈
λ Λ

−
Λ
ɶ
ɶɶ

ɶɶ

, J = J1 = J2, as T → 0, 

2x=ξ ξ .                                      (99) 

When J1 ≠ J2 a similar expression can be derived for ξx and ξy 

with here ξx ≠ ξy and 2 2
x yξ ξ ξ= + ; in equation (98) 

.0,0 0,1

~
< >S S  is replaced by .0,0 1,0

~
< >S S in ξy and 

| | | |z JΛ =ɶɶ β  becomes | | | |i iz JΛ =ɶɶ β , i = 1,2. 

This result is exclusively valid for 2d magnetic systems 

characterized by isotropic couplings because the correlation 

function reduces to the spin-spin correlation. 

As a result it becomes possible to characterize the nature 

of magnetic ordering owing to the T-decreasing law derived 

from equation (98) 

1
.0,0 0,1 ( ) 1 ( )

~
uf T Tξ −< > ≈ = −S S , as T → 0          (100) 

where u recalls the nature of the magnetic regime: u = RCR 

(Zone 1), QCR (Zones 3 and 4) and QDR (Zone 2). As 

previously seen we have ξQDR < ξQCR < ξRCR so that 

QDR QCR RCR( ) ( ) ( )f T f T f T< < , as T → 0.       (101) 

Thus, in Zone 1 (Renormalized Classical Regime), we 

have a strong long range order in the critical domain whereas 

in Zones 3 and 4 (Quantum Critical Regime) the magnitude 

of magnetic order is less strong. In Zone 2 (Quantum 

Disordered Regime) we deal with a very short magnitude 

characteristic of a spin fluid. 

5. Conclusion 

In this paper, if restricting the study of the two-dimen-

sional Heisenberg square lattice composed of classical spins 

to the physical case of the thermodynamic limit, we have 

obtained the exact closed-form expression of the zero-field 

partition function ZN(0) valid for any temperature. 

The thermal study of the basic l-term of ZN(0) has allowed 

to point out a new phenomenon: thermal crossovers between 

two consecutive eigenvalues. When T → 0, l → +∞. As a 

result all the successive dominant eigenvalues become 

equivalent so that Tc = 0 K.  

In addition we have exactly retrieved the low-temperature 

diagram of magnetic phases already obtained through a 

renormalization group approach [6,10].  

If using a similar method employed for expressing ZN(0) 

we have derived an exact expression for the spin-spin 

correlations and the correlation length ξ valid for any 

temperature. 

The T=0-limit of ξ shows the same expression as the 

corresponding one obtained through a renormalization 

process but exclusively valid near the critical point Tc = 0 K, 

for each low-temperature regime, with the good critical 

exponent ν = 1, thus validating the closed-form expressions 

obtained for ZN(0), the spin-spin correlations and the 

correlation length, respectively. 

Appendix 

A.1 Expression of the zero-field partition function in the 

thermodynamic limit 

For T > 0 K, between two consecutive crossover tempera-

tures ,il
T <  and ,il

T > , we have shown in the main text that, in 

the thermodynamic limit (N→+∞), ZN(0) can be written as 

( ) [ ] { }
22

max

48
0 (4 ) ( ) 1 ( , )

NN

NZ u T S N T= +π with S(N,T)= 

S1(N,T) + S2(N,T) (cf equations (27) and (28)). umax is the 

dominant eigenvalue in [ ,il
T < , ,il

T > ] according to equation 

(23). 

Due to the numerical property of , ( )
i il lu T  and 

,
( )

i jl lu T  (li 

≠ lj), a classification in the decreasing modulus order can be 

globally written so that S(N,T) has the form 

0

( , ) ( , )k

k

S N T X N T

+∞

=

=∑ , 0 < Xk(N,T) < 1, (A.1) 

with X1(N,T) > X2(N,T) > … > X∞(N,T). 

Now we artificially share the infinite series S(N,T) into two 

parts: 

B E
( , ) ( , ) ( , )

i i
k kS N T S N T S N T= + ,T∈[ ,il

T < , ,il
T > ], (A.2) 

with B

0

( , ) ( , )
i

i

k

k k
k

S N T X N T
=

=∑ ,
E ( , ) ( , )

ki

i

k
k k

S N T X N T

+∞

=
=∑ . 

The series 
B ( , )
ikS N T  and 

E ( , )
ikS N T

 
are the beginning and 

the end of S(N,T), respectively. 

We have the natural inequalities 
B

( , )
i

kS N T < S(N,T) and 
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E
( , )

i
kS N T < S(N,T). As we deal with an infinite (absolutely 

convergent) series made of positive vanishing current terms 

Xk(N,T) < 1 it is always possible to find a particular value ki = 

k1 of the general index k such as: 

1

B ( , )kS N T = 
1

E ( , )kS N T = 
2

ε
, S(N,T) = ε, 0 < ε < 1, 

T ∈[ ,il
T < , ,il

T > ]. (A.3) 

If increasing N >> 1 of n > 0 we automatically have 

1

K ( , )kS N n T+ < 
1

K ( , )kS N T = 
2

ε
, K = B, E, T∈[

,il
T < ,

,il
T > ] 

(A.4) 

because the inequality 0 <  Xk(N,T) <  1 imposes 0 

<  Xk(N+nT) <  Xk(N,T) < 1. Finally, if calling S(N+n,T) the 

sum 
1

B ( , )kS N n T+ +
1

E ( , )kS N n T+ we have S(N+nT) < S(N,T) 

= ε, T ∈ [
,il

T < , ,il
T > ]. As a result we derive 

S(N,T) = S1(N,T) + S2(N,T) → 0, as N → +∞ , 

for T ∈[ ,il
T < , ,il

T > ], (A.5) 

and due to equation (27) ( )
22 48

max0 (4 ) ( )
NN

NZ u T≈   π , as 

N → +∞, for any T ∈[
,il

T < ,
,il

T > ]. 

This reasoning can be repeated for each new range of 

temperature [ ,il
T < , ,il

T > ], with j ≠ i. 

In addition, for any predominance range [
,il

T < ,
,il

T > ], if 

comparing the current terms 
, 1

( , ,0) ( )
l l li i

u T F l l J 
 
 

= ×λ β

2
( )

l
J×λ β  and 

, 1 2
( , , ) ( ) ( )

l l l li j i ii ju T F l l m J J 
 
 

= λ β λ β  of 

S1(N,T) and S2(N,T) given by equation (28), it is always pos-

sible to find , ,( ) ( )l l l li i i j
u T u T>  for li = l ≤  lj (cf Figure 5). 

Consequently, if summing these terms over all the ranges 

[ ,il
T < , ,il

T > ] so that 
max

, ,

0

( )
i i

i

l l

i

T T T> <
=

= −∑ ,
0 , 0lT < = , 

1 , ,i il lT T
−

=> <  (i ≠ 0) and 
max

,il
T T> = we always have 

( )
2

max

4

,

1 2

max0,

( , ) ( , )

N

l l

l

l l

u T
S N T S N T

u

+∞

=
≠

= >> =
 
 
 

∑

( ),

0, max0( 1) ( 1)

i j

j j ii

N N
l l

l l lli N j N

u T

u

+∞ +∞

= ≠==− − =− −
∑ ∑∏ ∏ , 

as N → +∞ (A.6) 

due to the fact that 1 > max,| ( ) / |
i il lu T u  >> max,| ( ) / |

i jl lu T u  

> 0. As a result 

( ) ( ) ( )
2

2 48
, 1 2

0

0 (4 )
NN t

N l l l l

l

Z F J Jπ λ λ
∞+

=

 ≈ −β −β ∑ , 

as N → +∞. (A.7) 

A.2 Calculation of |ζ*
|Λ* 

near the critical point 

In the thermodynamic limit each expression of the thermo-

dynamic functions involves ratios of Bessel functions 

IΛ
∗
(z

*Λ∗
). These functions have to be evaluated in the double 

limit β|J| = |z
*
|Λ*→ +∞, Λ*

 → +∞. In that case Olver has 

shown [27] that the argument β|J| = |z
*
|Λ*

 must be replaced 

by |ζ*
|Λ* 

where 

*2

*2

*|z |
1 ln

1 1

J
z

J z
ζ ∗   

= − + +   + +   
,

*

*

J
z

β=
Λ

. (A.8) 

At the fixed point *
c 1 / 4z π=  we exactly have 

*| |ζ = 0. Near 

this critical point (see Figure 10),

*2 * *2
1 |ln(|z | / [1 1 ])|z z+ ≈ + +  for any Zone 1 to 4. As a 

result equation (A.8) reduces to 
* * 1 * 2

| | |ln(| | 1 )|z z
− −≈ + +ζ  

or equivalently * * 1| | |arcsinh(| | )|z −≈ζ  as * *
c| |z z→ . 

Near *
c 1 / 4z π= , for T < Tc or T > Tc, equation (A.8) can 

also be written |ln(
*| |z /2)| which depends on Λ*

. As the ratio 

* *
c c| | / /z z T T= is independent of Λ* >> 1 a scaling form of 

* *| |Λζ  can be 
** * * * /2

c| | 2ln(| / 2 | )z z ΛΛ ≈ζ  or 

** * /2
c2ln(|2 / | )z z Λ

, as 
* *

c| |z z→ . Due to the previous 

remarks we must have 

* *| |ζ Λ ≈
** * /2

c2arcsinh(| / 2 | )z z Λ
 or 

** * * * /2
c| | 2arcsinh(|2 / | )z z ΛΛ ≈ζ , as * *

c| |z z→ . (A.9) 

If * *| |ζ Λ  is a scaling parameter we must show that 

** *
c(| | / )z z Λ

or 
** *

/c( | |)z z Λ
is Λ*

- independent. In Zones 1 (x1 

<< 1) and 3 (x1 >> 1), 
*| |z > *

cz  so that, from the definition of 

ρs (cf equation (79)), we have * * *
/c s B(| | )z z k TΛ − = ρ . In 

Zones 2 (x2 << 1) and 4 (x2 >> 1) *| |z < *
cz . We similarly have 

from the definition of ∆ * * *
c B( | |) / 4z z k TΛ − = ∆ π . If intro-

ducing x1 and x2 given by equation (80): 

*
* * * c

c
1

2
(| | )

z
z z

x
Λ − = ,

*
* * * c

c
2

( | |)
z

z z
x

Λ − = ,
*
c

1

4
z =

π
. (A.10) 

Using the well-known relation 
**(1 / ) exp( )u uΛ± Λ = ± , as 

Λ* → +∞, we derive from equation (A.10) that, near *
cz  

* /2
*

*
1c

| | 1
exp

z

xz

Λ
   
        

= ,
*

* *
c 1

| | 2
exp

z

z x

 
 
 
 

=
Λ

; 
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* /2
*

*
2c

| | 1
exp

2

z

xz

Λ
   
        

= − ,
*

* *
c 2

| | 1
exp

z

z x

 
 
 
 

= −
Λ

. (A.11) 

As x1 and x2 are scaling parameters the ratios 
** *

c(| | / )z z Λ

and 
** *

/c( |)z | z Λ
are themselves scaling parameters as well as 

* *| |Λζ given by equation (A.9). 

Due to the behavior of * *
||ζ Λ  (cf Figure 12), if c

* *z z>  (T 

< Tc) 
* *| |Λζ  decreases with *z  as *z → *

cz  like the ratio 

** * /2
/c 1( | |) exp( 1/ )z z xΛ = − ; if c

* *z z<  (T > Tc) 
* *| |Λζ

decreases when *z  increases like the ratio 

** * /2
/c 2( | |) exp(1/ 2 )z z xΛ = . 

As a result, if taking into account these remarks for the 

previous equations, we can write 

( )1* *|
exp 1/

| 2arcsinh
2

x 
 
 
 

−
Λ ≈ζ  (Zones 1, 3), 

( )2* *|
exp 1/ 2

| 2arcsinh
2

x 
 
 
 

Λ ≈ζ  (Zones 2, 4). (A.12) 

The various asymptotic expansions of * *| |Λζ  are given in 

the main text. 

A.3 Asymptotic expansions of modified Bessel functions 

of the first kind of large order; application to the low-

temperature spin-spin correlations 

The expression of spin-spin correlations involves ratios 

such as 1( ) / ( )l lzl zl±λ λ  i.e., 1( ) / ( )l lI zl I zl±  where Il(zl) is 

the Bessel function of the first kind, with z = −βJ/l. 

In the main text, we have seen that, near Tc = 0 K, l must 

be replaced by Λ*
 = 2lΛ and more generally by any new scale 

Λ' = αl, as l → + ∞, with the imposed condition 

* *| |z l z= Λ = | '| 'z JΛ = β . We then have 

* *(| | ) (| | ) (| '| ')
l l l

z l z z= Λ = Λλ λ λ . When l → + ∞ 

* '

* *(| | )(| | ) (| '| ')l zz l zΛ ΛΛ≈ ≈ Λλλ λ . As a result we can write in 

the new Λ'-scale 

*

*

* *
1 1 ' 1

* *
'

(| | )(| | ) (| '| ')

(| | ) (| '| ')(| | )

l

l

zz l z

z l zz

+ Λ + Λ +

ΛΛ

Λ Λ≈ ≈
ΛΛ

λλ λ
λ λλ

, Λ'
 = αl → + ∞, 

| '| 'z Λ  → + ∞ (A.13) 

with a similar relation if l + 1 is replaced by l − 1. 

Then, if using equations (8) and (50), the recurrence 

relations between *
* *(| | )I zΛ Λ , *

* *

1
(| | )I zΛ + Λ , *

* *

1
(| | )I zΛ − Λ  

and the condition * 1 * * 1| | (2| | )z z− −>> Λ  as Λ*
 → +∞, we have 

* *

*

* *

* * * *

1

1 * * * * *

( ) ' (| | )

( ) | | (| | )

z I zJ
P

Jz z I z

Λ ± Λ
Λ ±

Λ Λ

 Λ Λ1 ≈ ≈ − + 
Λ Λ 

∓
λ
λ

, 

*

*

* *

* *

* *

(| | )
' (| | )

(| | )

dI z
I z

d z

Λ
Λ

Λ
Λ =

Λ
. (A.14) 

Due to the polynomial structure of the spin-spin corre-

lation 0,0 0,0 , '3. .z z
k,k' k kS S< >= < >S S  detailed in the main 

text (cf equation (49)), we have the asymptotic behavior as T 

→ Tc = 0 K (cf equation (88)) 

* *

* *

' '
* * * *

1 1
0,0 * * * *

( ) ( )3
. ...

2 ( ) ( )

k k k k

k,k'

I z I z

I z I z

+ +

Λ + Λ −

Λ Λ

    Λ Λ    < >≈ + +
    Λ Λ     

S S

, 

as * *| |z Λ  → + ∞. (A.15) 

In Zone 1 exclusively, we have * * *
c 1| | exp(2 / )z z x≈ Λ  (cf 

equation (A.11)) so that 
* 1 * 1

c| |z z− −<< except if 
*| |z  is close 

to 
*
cz  but, for Zones 2, 3 and 4, 

* 1 * 1
c| |z z− −≈ . As a result 

*

*

* *
( )

0,0 * *
( )

'
. 3 ...

KK

k,k'

I zJ

J I z

Λ

Λ

 
       
    

Λ
< >≈ − +

Λ
S S , K = k + k', 

Zone 1 (x1 << 1), 
*| |z >> 

*
cz ; 

*

*

2/2 * *
( )

0,0 2 * *
* ( )0

'1
. 3 ...

2
z

vK K

k,k' K v
v

I zKJ

vJ I z

  
Λ

−
= Λ

   Λ   < >= − +      Λ     

∑S S

, 

Zone 1 (x1 << 1), Zone 2 (x2 << 1), 

Zone 3 (x1 >> 1), Zone 4 (x2 >> 1), 

as T → 0, 
*| |z ∼ 

*
cz , (A.16) 

where / 2K 
   is the floor function which gives the integer 

part of K/2. 

Olver has shown [27] that the Bessel function *
* *(| | )I zΛ Λ

as well as *
* *' (| | )I zΛ Λ  can be expanded as the following 

series in the double infinite-limit Λ*
 → +∞ and * *

||z Λ → +∞ 

1
*

*

*

*2 1/4

*2 1/4

* *

* * *

(1 )

(1 )

(| | ) 1

' (| | ) 2

z

z z

I z

I z
−

−
Λ

Λ

   
   
       

+
×

+

Λ
≈

Λ Λπ
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( )0

* *

* *
* * * *

* *
0

( ) ( )

( ) ( )
exp(| | ) exp( | | )

s

s

s s

s s

s
s

U u U u

V u V u
ζ ζ

+∞

=

+∞

=

    
    
       × 

 
 
  

Λ ± − Λ
Λ −Λ

∑ ∑

, (A.17) 

where * *| |Λζ  is given by equation (A.12) and 

*2* 1 / 1u z= +  with | * *| /z J= Λβ . The coefficients         

Us(
*u ) and Vs(

*u ) which are u*-polynomials are detailed in 

[27,28]. 

Introducing the previous series in the ratios appearing in 

equation (A.16) we have 

*

*

* *

* * *

' (| | ) 1 ( )

(| | ) | | 1 ( )

*

* *

I z V u

I z u z U u

Λ +

+Λ

Λ +1≈ ×
Λ +

( )* * 1 ( ) 1 ( )
1 exp 2| | ...

1 ( ) 1 ( )

* *

* *

V u U u

V u U u
ζ − −

+ +

  
  

    

+ +× − − Λ + +
+ +

 

(A.18) 

as T → 0 where each u
*
-series of equation (A.17) has been 

written 
*1X X u 

 ± ±  
= +  with X± = U± or V± and *

( )X u± =

* *

1

( ) / ( ) .
s

s

s

X u

+∞

=

±Λ∑  

Near Tc = 0 K exclusively, as * *| |Λζ is a scaling 

parameter, we can then define a new scale Λ*
' such as 

* * * *' '2| | | |Λ = Λζ ζ i.e., Λ*
' = 2Λ*

 as Λ*
' → +∞. 

* * * *' '| | | |Λ ≈ Λζ ζ  has been calculated near 
*
c
' 1 / 4z = π  in 

Appendix A.2; the corresponding asymptotic expansions are 

given in the main text (cf equations (83)-(86)). 

The u
*
-argument of series terms U±(u

*
) and V±(u

*
) become 

u
*
' and the corresponding series U±(u

*
') and V±(u

*
'). Similarly 

z
*
 becomes z

*
' but 

* *
c c
' 1/ 4z z= = π . These series have been 

calculated at 
*

c
'

z  in a previous paper [24,31]. We have found 

2
* *
c c

*
c

' '( )
1

' 2( )

U z z

V z

+

+

   
   ≈ ±

  
  

;

* *
c c

* *
c c

' '( ) ( )1

' '( ) ( )

U z U z

eV z V z

− +

− +

   
   
   
   

≈ . (A.19) 

A detailed study shows that equation (A.18) must be used 

exclusively for Zone 1. For Zones 2, 3 and 4 it is just 

necessary to expand the series of equation (A.18). We have 

*

*

* *

* * * * * *

' '' (| | )' 1 1

' ' ' ' ' '(| | ) | | | |'

I z

I z u z z

Λ

Λ

Λ
≈ −

Λ Λ
 

* *

* * * *

1 1' '2exp | | ..
' ' ' '| | 2| |u z z

 
   

  
 

− − Λ − +
Λ

ζ , as T → 0. 

(A.20) 

For Zone 1 (x1 << 1), we derive from equation (A.10) that 

u
*
'/Λ*

' ∼ 1/ *
|

'|z Λ*
' ∼ x1/2

*
c
'z . For Zone 2 (x2 << 1) *

|
'|z << 

*
c
' 1 / 4z = π  and u

*
'/Λ*

' ∼ x2. In Zones 3 (x1 >> 1) and 4 (x2 

>> 1), the current term u
*
'/Λ*

'
 ∼  1/Λ*

' vanishes as Λ*
' → +∞. 

We skip the intermediate steps which show no difficulties 

and give the final results as T → 0: 

( )*

*

* *
'

1
1

* * *
' c

' '
' ( ) 2

1 exp 1/ 1 ...
' ' ' 2( )

I z x
x

I z ez

Λ

Λ

Λ  = − − − + 
 Λ

, (x1 << 1), 

*

*

* *
' * *

2 2
* * *

' 2 c

' '
' ( ) 1 ' '1 | | ...

' ' '
( )

I z
x x

I z x z
ζΛ

Λ

Λ
 = + − Λ +  Λ

, (x2 << 1), 

(A.21) 

( )*

*

* *
' * *

* * *
' c

' '
' ( ) 1 2 ' '

2(1 ) 1 1 | | ...
' ' ' 2(1 ) 1( )

C
C

C

I z e
C e

C eI z z
ζ

−
−Λ

−

Λ

Λ
= + − − Λ +

+ −Λ

 
 
 

 (x1, x2 >>1). 

Under these conditions, if taking into account all the 

previous results and remarks, we can write the low-tempe-

rature spin-spin correlation as T → 0 

* *

' '
0,0

1 1

3
. ...' '2

k k k k
k,k' P P

+ +

Λ + Λ −
 < >≈ + +
  

S S , 

*

*

*

* *

1

* *1

' '
( )'

' ' '
( )'

z
P

z

Λ ±
Λ ±

Λ

Λ
≈

Λ

λ

λ
, 

*

* * 1

1

8 ' '1 | | 1 ...' 2

xJ
P

J e

π ζ
Λ ±

  ≈ − − Λ − +  
  

, Zone 1 (x1 << 1), 

*

* *
2 2 2

*1
2 c

1 ' '1 | | ...' '

J
P x x x

J x z
ζ

Λ ±
 ≈ − + + − Λ +  
∓ , Zone 2 (x2 

<< 1), 

( )* *1
c

1
2(1 ) 1' '

1

2(1 ) 1
1C

C

J
P C e

J z C e

−

Λ ± −≈ − + −

±

+ −
+

*'*'
...

2
| |

2(1 ) 1

C

C

e

C e

−

− +


− Λ 
+ − 

ζ , 

Zone 3 (x1 >>1), Zone 4 (x2 >>1), as T → 0, (A.22) 

where the scaling parameter 
* * * *' '| | | |Λ ≈ Λζ ζ  is respectively 

given by equations (83)-(86). In Zones 1 and 3 
* *' '| |Λζ < 1 

near Tc = 0 K. In Zones 2 and 4 
* *' '

||ζ Λ > 1 (see Figure 12). 
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We note that except for Zone 1
*

1
'P

Λ ±
does not tend to unity 

due to the technique used for establishing the low-

temperature expansions of the various Bessel functions [27]. 

As pointed out by Olver [27] these expressions are defined 

within a numerical factor. As they are expressed with scaling 

parameters it becomes possible to renormalize them near Tc. 

A.4 Renormalized expressions of the low-temperature spin-

spin correlations 

We finally focus on the renormalization of the low-

temperature spin-spin correlations near Tc = 0 K. We define a 

new scale Λɶ  such as * *' '| |J z z= Λ = Λɶɶβ  with Λɶ = αΛ*
'. 

Owing to the multiplication theorem of the functions 

* ' ( )I x
Λ

α , for finite x > 0, α  > 0, we have 

*'

*' *'( ) ( )I x I xΛ
Λ Λ≈α α  at first order due to the Λ*

'-infinite 

limit [28]. As a result 

* * * * *

* * * *

1 1 1

' ' ' '
( ) / ( ) ( ) / ( )' ' ' ' 'P I z I z I z I z

Λ + Λ + Λ Λ + Λ
= Λ Λ = Λ Λɶ ɶɶ ɶα α

* *

* * * *

1

' ' ' '
( ) / ( )' 'I z I z

Λ + Λ
≈ Λ Λα . In the infinite Λ*

'- and Λɶ -

limits and due to equation (A.13) we finally have 

*1
1'P PαΛ+ Λ +

≈ɶ
ɶ . 

*
1

'P
Λ −

 can be expressed as 
*

1
'P

Λ +
 i.e., with the 

ratio * '
*

* * * *' ' ' '
' ( ) / ( )'I z I zΛ Λ

Λ Λ  characterized by the factor 

* * 1
c c
' '

( )K u z
−

(cf equations (A.21) and (A.22)). 

As a result the dilation factor α for 
*

1
'P

Λ ±
is such as 

* *
1

' '| |

K

u z
=α

,
2

* *
c c

*
c

' '

'1

z z

K
K z

= ≈
+

α , Λɶ  = αΛ*
'.    (A.23) 

In the main text we have seen that the spin-spin correlation 

0,0 0,1.< >S S  plays a major role. We must have 

0,0 0,1. 1< > =S S  at Tc = 0 K. Thus the renormalization of 

the first of equation (A.22) finally imposes to have 
1

1PΛ± →ɶ
ɶ . 

Owing to equations (8) and (A.14) we can define the 

renormalized spin-spin correlation 0,0 0,1.< >S S  as 

.0,0 0,1 1 1

' (| | )1
...

2 (| | )

~ I zJ
P P

J I z

Λ
Λ+ Λ−

Λ

Λ
 < > ≈ + + = −  Λ

=ɶ

ɶ ɶ

ɶ

ɶɶ
ɶ ɶ

ɶɶ
S S  

ln (| | )

(| | )

d zJ

J d z

Λ Λ
−

Λ
ɶ
ɶɶ

ɶɶ

λ
, as T → 0 (A.24) 

where (| | )zΛ Λɶ
ɶɶλ  is the dominant eigenvalue (in the limit Λɶ

→+∞). In the limit T → 0, as x1 and x2 are scaling 

parameters, we have 

1
1 11

8
1 1 ...

2

xJ
P

J e

π ζΛ±
  ≈ − − Λ − +  

  
ɶ

ɶɶ ɶ , α1 = 1/3, *'

1
Λ = Λɶ , 

Zone 1 (x1 << 1), 

,
*

2 2 c
' / 3x z=α , *'

2 2xΛ = Λɶ , 

Zone 2 (x2 << 1), 

3 31

1
1 ...

2(1 ) 1C

J
P

J C e
Λ± −

 
≈ − ± + − Λ + 

+ −  
ɶ

ɶɶ ɶζ , 

*
c

3

'

3(2(1 ) 1)C

z

C e−=
+ −

α , *'3
3

*
c

6

'

Ce

z

−
Λ = Λɶ α

, 

Zone 3 (x1 >>1), Zone 4 (x2 >> 1) (A.25) 

where C is given by equation (87) and 
*

3 c

'
6 /C

e zα−
 = 1.530 

440. 

Near Tc = 0 K the key renormalized spin-spin correlation 

.0,0 0,1

~
< >S S  given by equation (A.24) can also be written 

.0,0 01 1 ( ) ...
~

i

J
f x

J
< > ≈ − − +  S S , as T → 0, (A.26) 

1
1 1 1

8
( ) 1

2

x
f x

e

π ζ  = Λ − 
 

ɶ ɶ , Zone 1 (x1 << 1), 

2 2 2( )f x = Λɶ ɶζ , Zone 2 (x2 << 1) ; 

3 3 3( )f x = Λɶ ɶζ , Zone 3 (x1 >>1), Zone 4 (x2 >>1) (A.27) 

with 
* * * *' '

| | | |i iζ ζ ζΛ ≈ Λ ≈ Λɶ ɶ  for Zone i (i = 1 to 3) as 

* *
||ζ Λ is a scaling parameter near Tc. 

ORCID iDs 

Jacques Curély https://orcid.org/0000-0002-2635-7927. 

 

References 

[1] Bednorz, J. G., and Müller, K. A. (1986). Possible High TC 
Superconductivity in the Ba-La-Cu-O System. Z. Phys. B64: 
189-193. 

[2] Chakravarty, S. (1990) High-Temperature 
Superconductivity (edited by Bedell, K., Coffey, D., 
Meltzer, D. E., Pines, D., Schrieffer, J. R., Addison-
Wesley, Reading, MA), p. 136. 

[3] Manousakis, E. (1991). The Spin-½ Heisenberg 
Antiferromagnet on a Square Lattice and its Application to the 
Cuprous Oxides. Rev. Mod. Phys. 63: 1-62. 

[4] Dagotto, E. (1994). Correlated Electrons in High-Temperature 
Superconductors. Rev. Mod. Phys. 66: 763-840. 



62 Jacques Curély:  The Two-Dimensional Infinite Heisenberg Classical Square Lattice: Zero-Field Partition  

Function and Correlation Length 

[5] Chakravarty, S., Halperin, B. I., and Nelson, D. R. (1988). 
Low-Temperature Behavior of Two-Dimensional Quantum 
Antiferromagnets. Phys. Rev. Lett. 60, 1057-1060. 

[6] Chakravarty, S., Halperin, B. I., and Nelson, D. R. (1989). 
Two-Dimensional Quantum Heisenberg Antiferromagnet at 
Low-Temperatures. Phys. Rev. B39, 2344-2371 and 
references therein. 

[7] Tyc, S., Halperin, B. I., and Chakravarty, S. (1989). Dynamic 
Properties of a Two-Dimensional Heisenberg Antiferromagnet 
at Low Temperatures. Phys. Rev. Lett. 62, 835-838. 

[8] Moore, M. A., and Newman, T. J. (1995). Critical 
Fluctuations and Disorder at the Vortex Liquid to Crystal 
Transition in Type-II Superconductors. Phys. Rev. Lett. 75, 
533-536. 

[9] Newman, T. J., and Moore, M. A. (1996). Vortex-Liquid-
Vortex-Crystal Transition in Type-II Superconductors. Phys. 
Rev. B54, 6661-6675. 

[10] Chubukov, A. V., Sachdev, S., and Ye, J. (1994). Theory of 
Two-Dimensional Quantum Heisenberg Antiferromagnets 
with a Nearly Critical Ground State. Phys. Rev. B49, 11919-
11961 and references therein. 

[11] Haldane, F. D. M. (1983). Continuum Dynamics of the 1-d 
Heisenberg Antiferromagnet: Identification with the O(3) 
Nonlinear Sigma Model. Phys. Lett. A93, 464-468. 

[12] Haldane, F. D. M. (1983). Nonlinear Field Theory of Large-
Spin Heisenberg Antiferromagnets: Semiclassically Quantized 
Solitons of the One-Dimensional Easy-Axis Néel State. Phys. 
Rev. Lett. 50, 1153-1156. 

[13] Anderson, P. W., Baskaran, G., Zou, Z., and Hsu, T. (1987). 
Resonating-Valence-Bond Theory of Phase Transitions and 
Superconductivity in La2CuO4-Based Compounds. Phys. Rev. 
Lett. 58, 2790-2793. 

[14] Nelson, D. R., and Pelkovits, R. A. (1977). Momentum-Shell 
Recursion Relations, Anisotropic Spins, and Liquid Crystals 
in 2 + e Dimensions. Phys. Rev. B16, 2191-2199. 

[15] Hasenfratz, P., and Niedermayer, F. (1991). The Exact 
Correlation Length of the Antiferromagnetic d = 2 + 1 
Heisenberg Model at Low Temperatures. Phys. Lett. B228, 
231-235; Hasenfratz, P., and Niedermayer, F. (1993). Finite 
Size and Temperature Effects in the AF Heisenberg Model. Z. 
Phys. B92, 91-112. 

[16] Escuer, A., Vicente, R., Goher, M. A. S., and Mau tner, F. A. 
(1996). Synthesis and Structural Characterization of [Mn(ethyl 
isonicotinate)2(N3)2]n, a Two-Dimensional Alternating 
Ferromagnetic-Antiferromagnetic Compound. 
Magnetostructural Correlations for the End-to-End 
Pseudohalide-Manganese System. Inorg. Chem. 35, 6386-
6391. 

[17] Escuer, A., Vicente, R., Goher, M. A. S., and Mautner, F. A. 
(1997). A New Two-Dimensional Manganese(II)-Azide 
Polymer. Synthesis, Structure and Magnetic Properties of 
[{Mn(minc)2(N3)2}]n (minc = methyl isonicotinate). J. Chem. 
Soc. Dalton Trans. 4431-4434. 

[18] Goher, M. A. S., Morsy, A. M. A-Y., Mautner, F. A., Vicente, 
R., and Escuer, A. (2000). Superexchange Interactions through 

Quasi-Linear End-to-End Azido Bridges: Structural and 
Magnetic Characterisation of a New Two-Dimensional 
Manganese-Azido System [Mn(DENA)2(N3)2]n (DENA = 
diethylnicotinamide). Eur. J. Inorg. Chem. 1819-1823. 

[19] Escuer, A., Esteban, J., Perlepes, S. P., and Stamatatos, T. C. 
(2014). The Bridging Azido Ligand as a Central “Player” in 
High-Nuclearity 3d-Metal Cluster Chemistry. Coord. Chem. 
Rev. 275, 87-129. 

[20] Curély, J. (1995). Analytical Solution to the 2d Classical 
Heisenberg Model. Europhys. Lett. 32, 529-534. 

[21] Curély, J. (1998). Thermodynamics of the 2d Heisenberg 
Classical Square Lattice. I. Zero-Field Partition Function. 
Physica B245, 263-276. 

[22] Curély, J., and Rouch, J. (1998). Thermodynamics of the 2d 
Heisenberg Classical Square Lattice. II. Thermodynamic 
Functions Derived from the Zero-Field Partition Function. 
Physica B254, 277-297. 

[23] Curély, J., and Rouch, J. (1998). Thermodynamics of the 2d 
Heisenberg Classical Square Lattice. III. Study of the Static 
Susceptibility. Physica B254, 298-321. 

[24] Curély, J. (2018). Zero-Field Partition Function and Free 
Energy Density of the Two-Dimensional Heisenberg Classical 
Square Lattice. arXiv: 1710.08387, 1-77; Curély, J. (2019). 
The Two-Dimensional Infinite Heisenberg Classical Square 
Lattice: Exact Theory and Experimental Results. arXiv: 
1907.12395,1-47. 

[25] Mermin, N. D., and Wagner, H. (1966). Absence of 
Ferromagnetim or Antiferromagnetism in One- or Two-
Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 
17, 1133-1136. 

[26] Varshalovisch, D. A., Moskalev, A. N., and Khersonskii, V. K.. 
(1988). Quantum Theory of Angular Momentum (World 
Scientific). 

[27] Olver, F. W. J. (1952). Some New Asymptotic Expansions for 
Bessel Functions of Large Order. Proc. Cambridge Philos. 
Soc. 48, 414-427; Olver, F. W. J. (1954). The Asymptotic 
Expansion of Bessel Functions of Large Order. Philos. Trans. 
Roy. Soc. London series A247, 328-368; Olver, F. W. J. 
(1997). Asymptotic and Special Functions (Peters A. K. Ltd, 
Natick). 

[28] Abramowitz, M., and Stegun, I. A. (1965). Handbook of 
Mathematical Functions (Dover Publications Inc., New York). 

[29] Sachdev, S. (1992). Low-Dimensional Quantum Field 
Theories for Condensed Matter Physicists, Series in Modern 
Condensed Matter Physics, Vol.6, Lecture Notes of ICTP 
Summer Course Trieste, Italy (edited by Lundqvist, S., 
Morandi, G., and Yu Liu (World Scientific, Singapore) and 
references therein. 

[30] Savary, L. and, Balents, L. (2017). Quantum Spin Liquids: a 
Review. Rep. Prog. Phys. 80, 016502, 1-54; Savary, L., and 
Balents, L. (2016). Quantum Spin Liquids. arXiv: 
1601.03742, 1-59. 

[31] Curély, J. (2020). The Two-Dimensional Infinite Heisenberg 
Classical Square Lattice: Zero-Field Partition Function and 
Correlation Length. arXiv: 2002.09295, 1-37. 

 


